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Abstract 

UTrAp 2.0:  Linearized Buckling Analysis of Steel Trapezoidal 

Girders 

 

Daniel Ray Popp, M.S.E. 

The University of Texas at Austin, 2004 

Supervisor:  Eric B. Williamson 

 

Steel trapezoidal box-girder bridges have been gaining popularity due to 

their aesthetic appeal and structural efficiency.  The completed closed section 

resists torsion very efficiently, making it an attractive choice for curved bridges.  

Under construction loading, however, the section is open or pseudo-closed, 

offering very little torsional capacity.  Thus, the construction stage is critical in 

the response of these systems. 

The stability of a girder in the construction process is of particular 

concern.  Numerous failures of individual brace members have been observed, 

and global buckling failures have occurred in two bridges under construction in 

the past several years, one of which resulted in loss of life.  In order to provide a 

tool for understanding and predicting the buckling behavior of steel trapezoidal 

girders, the elastic analysis program UTrAp has been modified to include a 

buckling analysis capability.  UTrAp 2.0 performs a linearized buckling analysis, 

using the finite element model developed previously.  Geometric nonlinearity is 

 vi



included, but material nonlinearity is not taken into account.  The program finds 

the buckling load as a scalar multiple of the applied load, assuming linear-elastic 

behavior.  Included in the output are deflections and rotations of the girder to 

assist a designer in visualizing the buckled shape.  A comparison with the results 

of general finite element software shows that UTrAp 2.0 accurately predicts the 

linearized buckling load. 
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CHAPTER 1 
Introduction 

 
“The beginning is the most important part of the work.” 

- Plato 

1.1 BACKGROUND 

Since being introduced in the United States in the early 1960s, steel box-

girder bridges have grown in popularity.  Hundreds of these structures have been 

built over the last four decades, including several dozen in the state of Texas.  The 

torsional rigidity of the completed section makes it ideal for curved bridges such 

as those in large highway interchanges.  A box girder’s clear expression of 

structural function enhances the bridge’s aesthetic appeal, an increasingly 

important aspect of design. 

Steel box girders typically utilize sloping webs in order to decrease the 

width of the bottom flange, leading to the designation “trapezoidal”.  A cross-

section of a typical steel trapezoidal box-girder bridge is shown in Figure 1.1. 

 

 
Figure 1.1  Cross-section of a steel trapezoidal box girder (US Steel, 1978) 
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Shear connectors on the top flanges of the girders allow the concrete deck 

to act compositely with the steel girder, resulting in a very stiff completed section 

that is more than adequate for carrying live loads during its service life.  However, 

during construction, the steel section alone must resist the loads, which are due 

primarily to the dead weight of the concrete during the deck pour.  Thus, the 

construction phase is often critical in the design of steel trapezoidal box-girder 

bridges. 

 

 
Figure 1.2  Local failure of bracing member during construction (Chen, 2002) 

A majority of the problems that have occurred with steel box-girder 

bridges have taken place during construction, including all of the overall failures.  

Three major collapses occurred during construction three decades ago including 

those in 1970 at Milford Haven, Wales and West Gate, as well as the one in 

Koblenz, Germany in 1971.  These failures led to a revision of the governing 
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design philosophies to include a consideration of ultimate buckling strength.  

Trapezoidal box-girder bridges have more recently experienced a variety of 

problems during construction, ranging from buckling of bracing members, as 

shown in Figure 1.2, to complete collapse, as in the case of the pedestrian bridge 

near Marcy, New York, shown in Figure 1.3.  All of these failures are related to 

stability, not yield strength.  Current design specifications do not adequately 

address stability, which clearly can be a governing design criterion. 

 

 
Figure 1.3  Collapse of pedestrian bridge near Marcy, New York (Utica 

Observer-Dispatch) 
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 4

1.2 PREVIOUS WORK 

The steel box girder construction failures in the early 1970s led to more 

research on the behavior of these structural systems during construction.  

McDonald et al. (1976) tested box sections with top lateral bracing, analyzed 

using the equivalent box section method that had been introduced by Dabrowski 

(1968).  A report by United States Steel (1978) detailed common construction 

difficulties and provided guidelines for design.  Branco and Green (1985) studied 

the elastic response of steel box girders with various bracing configurations to 

construction loading. 

Nonlinear behavior of steel box girders was also a particular focus of 

research after the series of collapses.  Galambos (1998) noted that after the 

failures, emphasis was shifted from elastic critical loads to inelastic buckling 

strengths for ultimate design.  Experiments were performed by Corrado and Yen 

(1973) and others to determine the ultimate behavior characteristics of steel box 

girders.  Dowling (1975) and Thimmhardy (1991) studied the buckling of steel 

box girders with initial imperfections.  Salahuddin (1994) discussed the design of 

box girder bridges by nonlinear theory, giving a design procedure involving 

longitudinally-stiffened flanges. 

A majority of the literature encountered tends to separate construction 

considerations from stability considerations.  The construction phase has been 

studied almost exclusively from a strength standpoint, not considering stability.  

Studies of completed girders have included nonlinearity, and many tests have 

been performed to determine their ultimate capacity.  Stability during 

construction, however, has rarely been considered, and is usually left for the 

contractor to handle.  Sennah and Kennedy (2001), in a state-of-the-art review of 

the design of curved steel box-girder bridges, stated: 
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The current North American codes as well as the published 

literature do not provide the design engineer with adequate 

information on the behavior of the unshored straight and curved 

box-girder bridges during the construction phase.  Further 

research work is required using 3D finite-element analysis to 

investigate the behavior of straight and curved box girders at this 

phase and avoid possible failure. 

This advice gains new urgency from the recent failures of steel trapezoidal box-

girder bridges. 

Much of the recent research involving steel trapezoidal box-girder bridges 

has taken place at The University of Texas at Austin.  Studies of the buckling 

behavior of steel trapezoidal box girders were performed by Gilchrist (1997) and 

Chen (1999).  The work by Gilchrist involved laboratory testing of scale models 

and finite-element buckling analysis in which the box girders were treated as two 

independent I-girders with continuous bottom flange bracing.  Chen continued the 

work by Gilchrist, examining the effect of top lateral bracing on the buckling of 

steel box girders.  Here again the trapezoidal sections were treated as two half-

girders for the purposes of buckling analysis.  Recent construction problems, 

including the Marcy bridge collapse, have shown that this simplification may be 

inappropriate for certain types of box-girder bridges. 

 

1.3 SCOPE 

The work presented in this thesis was part of TxDOT research project No. 

0-4307 “Steel Trapezoidal Girders: State-of-the-Art.”  The purpose of this portion 

of the project was to develop software to perform stability analyses of steel 

trapezoidal box-girder bridges.  The software developed for the current study was 
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based on an existing linear-elastic finite-element analysis program that explicitly 

models the steel section, the concrete deck, and the partially composite action 

present during the placement of the concrete.  The original program, UTrAp, was 

developed at The University of Texas at Austin by Cem Topkaya and Eric 

Williamson as part of a previous research project (Topkaya 2002). 

As a method of predicting stability, an elastic critical load analysis 

capability was added to the existing UTrAp program.  This approach, also known 

as Euler buckling analysis, gives the load at which a secondary load path becomes 

mathematically possible.  The revised program, named UTrAp 2.0, is employed in 

a preliminary investigation of the stability of trapezoidal box girders.  Special 

attention is given to the Marcy pedestrian bridge, being an actual example of a 

stability-related failure during construction.  Conclusions are drawn based on 

these studies, and recommendations are given to assist the designer in assuring the 

stability of steel trapezoidal box-girder bridges during construction. 

 

1.4 ORGANIZATION 

Chapter two of this thesis presents the theory behind the finite element 

analysis in UTrAp 2.0.  To add the buckling analysis capability, the necessary 

nonlinear stiffness matrices were formed for each type of element, as described in 

the chapter.  Additions to the linear analysis procedures in the original program 

are also documented. 

In chapter three, a procedure for finding the elastic critical buckling load is 

presented.  The mathematical formulation is known as the eigenproblem.  

Solution methods are discussed, and the method of choice is explained along with 

details of the program implementation. 
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The verification process for UTrAp 2.0 is described in the fourth chapter.  

Buckling loads obtained from the program are compared with simple theory, 

commercial finite element software, and observations from the Marcy bridge 

collapse.  Chapter five documents the capabilities and limitations of UTrAp 2.0 

and provides guidance for the user. 

Chapter six presents an analytical method for determining the critical 

buckling stress in a straight, simply-supported trapezoidal girder.  The developed 

formulation is evaluated by considering the performance of the Marcy bridge and 

results predicted using finite element analyses.  Lateral torsional buckling of the 

entire cross-section of a girder is investigated using both the derived equation and 

UTrAp 2.0. 

Conclusions drawn from the research are presented in the final chapter.  

The work done with the completed program has been somewhat limited in scope, 

leaving much to be explored in future research.  Recommendations for additional 

work are given. 
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CHAPTER 2 
Buckling Analysis Formulation 

 
“Equations are just the boring part of mathematics.” 

- Stephen Hawking 

 
The objective of this research project was to add buckling analysis 

capabilities to an existing linear analysis finite element program.  In this chapter, 

structural analysis options that are available are presented along with the 

explanation for the approach implemented in UTrAp 2.0.  The finite element 

modeling process used by UTrAp is explained, and both the linear and nonlinear 

stiffness formulations for each type of finite element implemented in UTrAp 2.0 

are presented. 

2.1 TYPES OF STRUCTURAL ANALYSIS 

Structural analysis can be performed on a number of levels, ranging from 

simple, approximate analyses to complex, more accurate analyses.  The method of 

analysis chosen depends on the desired information about the structure being 

modeled.  For structural response at service loads, a first-order linear elastic 

analysis is almost always adequate.  If information about the buckling 

characteristics of the structure is desired, an elastic critical load analysis can be 

performed, giving the load at which an alternate load path becomes 

mathematically valid.  An inelastic critical load analysis is similar, but includes 

the possibility of nonlinear material behavior.  Also available to the analyst are 

second-order elastic and inelastic methods, which are much more computationally 

demanding but more capable of predicting actual behavior. 
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In UTrAp 2.0, an elastic critical load analysis is performed.  The steel 

trapezoidal box girders analyzed by the program are formed from thin plates 

which tend to buckle at stresses much lower than the yield stress.  Material 

nonlinearity is thus not of great concern and is not considered in the program. 

2.1.1 Elastic Critical Load Analysis 

In a general linear analysis, equilibrium of the structure is found in the 

original, undeformed configuration, with the displacements assumed to be 

infinitesimal.  For stability analysis, equilibrium is enforced in the deformed 

position.  Because a change in the configuration of the structure being analyzed is 

considered, this type of structural analysis is known as geometrically nonlinear 

analysis.  It is also possible to consider material nonlinearity, but for an elastic 

critical load analysis, material behavior is assumed to be linear and elastic. 

In order to perform a geometrically nonlinear analysis, an additional 

matrix must be added to the elastic stiffness matrix.  This matrix, known as the 

geometric stiffness matrix, is a function of both the geometry of the structure and 

the stresses in the members.  As with the elastic stiffness matrix, local geometric 

stiffness matrices are assembled into the global geometric stiffness matrix for the 

structure, which is then used in the eigenproblem.  The formulation and solution 

of the elastic critical analysis eigenproblem is presented in Chapter 3. 

 

2.2 ELEMENT FORMULATIONS 

UTrAp forms a mathematical representation of a bridge structure using 

various finite elements.  The concrete deck and the steel plates that form the 

girders are both modeled with shell elements.  Bracing members, including 

internal braces, external braces, and top lateral braces, are modeled with truss 

elements.  Spring elements are used to model the shear studs, capturing the 



variable composite action between the concrete deck and the girder that is 

possible during construction.  Each type of element is formulated individually and 

assembled into the overall structural model.  This section presents the 

formulations for both the elastic stiffness matrix and the geometric stiffness 

matrix of each element type. 

2.2.1 Shell Element Elastic Stiffness 

UTrAp employs a nine-noded, isoparametric shell element developed by 

Ahmad, Irons, and Zienkiewicz (1970) and shown in Figure 2.1.  Details of this 

formulation are given in Topkaya (2002).  The shell element is mapped from the 

x, y, and z coordinates into material coordinates ξ, η and ζ.  At each node, a right-

handed triplet of unit vectors is defined, with V2 along the length of the bridge, V3 

through the thickness of the element, and V1 orthogonal to V2 and V3. 

 

 

 

x 

y 

z 

V3 

V1 

V2 

 
Figure 2.1  Nine-noded shell element (Topkaya, 2002) 
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The geometry x of the element can be interpolated as follows: 
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where xi is a vector of the x-y-z coordinates at node i, h is the constant shell 

thickness, and Ni(ξ,η) are the Lagrangian shape functions found in Bathe (1982). 

Deformations are defined by three displacement degrees of freedom, u, v, 

and w, along with two rotational degrees of freedom, α and β, defined as the 

rotations about the V1 and V2 axes, respectively.  The displacement field u is 

defined as follows: 
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where ui is the vector of displacements at node i.  The number of degrees of 

freedom is reduced from six to five by neglecting the “drilling” degree of 

freedom, that is, rotations about a vector normal to the shell surface.  These 

rotations, being in the plane of the element, are small and store relatively little 

strain energy.  Accordingly, they can be disregarded without sacrificing accuracy 

in the solution. 

Another simplification is the basic shell assumption that the stress normal 

to any lamina is zero.  The full 6 x 6 rigidity matrix in local coordinates has one 

row and one column of zeros, and can be reduced to 
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where k is the bulk modulus of the material. 
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The global rigidity matrix is calculated as follows: 

RDRD localT=  (2.4)

where the rotation matrix is formed from the direction cosines: 
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The B matrix relates strains to nodal parameters a: 
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with 
T

0ε
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

=
x
v

y
u

z
u

x
w

y
w

z
v

z
w

y
v

x
u  (2.7)

{ }Ta K211111 uwvu βα=  (2.8)

The elastic stiffness matrix can now be defined according to the following 

equation: 

∫=
V

dVDBBK T  (2.9)

where V is the volume of the element.  This integration is performed numerically 

using Gaussian quadrature with three points in the ξ and η directions and two 

points in the ζ direction.  Accordingly, the stiffness matrix is computed by Eq. 

(2.10): 

∑
=

=
18

1

)()det(
ip
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In the above expression, det(J) is the determinant of the Jacobian matrix and w(ip) 

is the weighting factor at the integration point. 
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2.2.2 Shell Element Geometric Stiffness 

For stability analysis, the original shell element formulation must be 

extended to include nonlinear geometry.  The general three-dimensional strain 

vector can be divided into infinitesimal and large displacement components: 

L0 εεε +=  (2.11)

where the infinitesimal strain  is defined in Eq. (2.6).  The nonlinear strain 

terms can be written using a new matrix A: 
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xθ  (2.13)

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

=
y
w

y
v

y
uT

yθ  (2.14)

⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

∂
∂

=
z
w

z
v

z
uT

zθ  (2.15)

Taking the variation of Eq. (2.12) and using the fact that θAθA δδ =  (see 

Zienkiewicz 1977), 

θAθAθAεL δδδδ =+=
2
1

2
1  (2.16)

The G matrix relates the derivatives of the displacement functions to the 

nodal parameters a: 
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Gaθ =  (2.17)

In expanded form, Eq. (2.17) becomes 
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It follows that 

aBaAGε LL δδδ ==  (2.18)

and 

AGBL =  (2.19)

TTT
L AGB =  (2.20)

TTT
L AGB δδ =  (2.21)

The geometric stiffness matrix can be defined as follows: 

∫∫ ==
VV

VV dd σAGσBaK TTT
Lσ δδδ  (2.22)
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where the vector of initial stresses is 

{ }Tσ yzxzxyzyx τττσσσ=  (2.23)

It can be verified that  

θMθ
I
II
III

σA

3

33

333
T δδ

σ
τσ
ττσ

δ =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

yzy

xzxyx

sym.
 (2.24)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

3I  (2.25)

The matrix M depends on the initial stress vector σ , which must be in global 

coordinates.  The stresses in local coordinates are found from the elastic analysis: 

{ }T
localσ ''''''

yzxzxyzyx τττσσσ=  (2.26)

Note that  must be zero according to the shell assumption.  The local stresses 

are rotated to the global coordinate system using the matrix found in Eq. (2.5): 

'
zσ

local
TσRσ =  (2.27)

Using the relationship 

aGθ δδ =  (2.28)

along with Eqs. (2.22) and (2.24), the geometric stiffness matrix in global 

coordinates is 

∫=
V

VdMGGK T
σ  (2.29)

Evaluated numerically as with the elastic stiffness matrix, Eq. (2.29) becomes 

∑
=

=
18

1

)()det(
ip

ipwJMGGK T
σ  (2.30)

where det(J) and w(ip) are the same as in Eq. (2.10). 
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2.2.3 Truss Element Elastic Stiffness 

UTrAp uses a standard 3-dimensional, 2-noded truss element.  The 

familiar elastic stiffness matrix in local coordinates is 
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⎥
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⎥
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=
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001001
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001001

L
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(2.31)

where E is the modulus of elasticity, A is the cross-sectional area, and L is the 

element length. 

2.2.4 Truss Element Geometric Stiffness 

Although the geometric stiffness matrix for a simple truss element is 

readily found in many references, its derivation is given below to illustrate the 

process followed for all element types.  The general procedure is the same as that 

given for the shell element above. 

The geometry of a two-noded truss element is defined by its nodal 

coordinates and assumed shape functions: 
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(2.32)

Likewise, the displacements are related to the nodal parameters: 
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(2.33)
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or 

Nau =  (2.34)

where N is a vector of the shape functions, assumed to be linear for a truss 

element: 

( )

( )ξξ

ξξ

+=

−=

1
2
1)(

1
2
1)(

2

1

N

N
 

 

(2.35)

Total strain is defined in Eq. (2.11), where the terms are as follows: 
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(2.37)

The nonlinear strain terms above can be written in the form of Eq. (2.12).  The G 

matrix is defined by Eq. (2.17), which can be expanded as follows: 
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(2.38)

where 

x
N

x
N

∂
∂

∂
∂

=
∂
∂ ξ

ξ
11  (2.39)

Because a truss element by definition has no shear stresses, the M matrix becomes 
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 (2.40)

and the matrix product  from Eq. (2.29) expands toMGG T
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If the truss element lies along the x-axis, ξ  is defined as follows: 
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The (1,1) term in the geometric stiffness matrix is therefore 
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because yσ  and zσ  are zero.  The volume is simply the area multiplied by the 

length, which gives 

∫
L

xx dxA
L0

2

1 σ  

The stress multiplied by the area is the axial force in the member, leading to 

L
F

K x
G =11  

The remaining terms can be calculated in a similar fashion, resulting in the entire 

geometric stiffness matrix for a two-noded truss element: 
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(2.41)

which agrees with that given by McGuire et al. (2000) and other references on the 

subject.  As noted above, the derivation for a truss element geometric stiffness 

matrix was done to provide an example of the process, which is the same for the 

other elements, including the shells. 
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2.2.5 Spring Element Stiffness 

A standard three-dimensional, two-noded spring element is used for the 

shear stud elements in UTrAp 2.0.  The elastic stiffness matrix as given in 

Topkaya (2002) is 
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(2.42)

where K1, K2, and K3 are the stiffness values in the three global directions.  

Because the shear studs serve only to connect the deck and the top flange 

elements, accounting for geometric nonlinearity of the studs does not influence 

the buckling load.  Therefore, the stud elements are not added to the global 

geometric stiffness matrix, and no local geometric stiffness formulation is needed. 

2.2.6 Web Stiffener Element Elastic Stiffness 

Steel trapezoidal box-girder bridges typically have internal cross frames or 

diaphragms along their length in order to prevent cross-sectional distortion.  In 

addition, web stiffeners are added at the internal brace locations to prevent the 

local forces due to the brace members from buckling the web.  A typical cross-

section with web stiffeners and an internal brace is shown in Figure 2.2.  The 

brace members are typically angle sections or structural tees joined by a gusset 

plate at the center and either bolted or welded to the web stiffeners, which are 

generally formed from steel plate. 
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Web Stiffeners 

Internal Brace 
Members 

 
Figure 2.2  Web stiffeners and internal brace 

The original version of UTrAp models the internal brace members as truss 

elements, and can accurately predict the axial forces in the members.  However, it 

does not include any representation of the web stiffeners.  For the elastic analysis, 

this modeling approach is sufficient, as the results given by the program are in 

agreement with both other finite element programs and field data from actual 

bridges.  After modifying the original program to include a buckling analysis, it 

was observed that the lower buckling modes all involved web bending, usually 

near the internal brace locations.  Without web stiffeners, the web itself has to 

carry the forces from the truss action of the brace members along with the 

remaining stresses due to the loads, leading to buckling behavior dominated by 

local web bending.  In order to predict the buckling response of the girders more 

accurately, it was deemed necessary to add web stiffeners to the model. 
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Beam elements were chosen to model the web stiffeners, which are 

designed to resist both axial forces and bending moments.  Because the original 

version of UTrAp contained no beam elements, a new formulation was required.  

In order to integrate the new beam element with the existing model, five degrees 

of freedom were used at each node.  Nine-noded elements were required to match 

the number of nodes in the web.  The resulting web stiffener element is shown in 

Figure 2.3. 
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Figure 2.3  Web stiffener element 

In Figure 2.3, b and t are the width and thickness of the web stiffener, 

respectively, and L is the distance between nodes in the webs.  As shown in the 

figure, the web stiffener element has three translational degrees of freedom and 

two rotational degrees of freedom: one about the x-axis, which corresponds to α 

in the shell formulation, and the other about the z-axis, which corresponds to β.  

Without a rotational degree of freedom about the y-axis, the stiffness matrix for 

the web stiffener element cannot be assembled directly from the two-noded 

stiffness matrices of the beam elements that comprise it because the degrees of 

freedom in the y-direction are not independent.  This difficulty was avoided by 
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first forming the stiffness matrix for a two-noded beam element with six degrees 

of freedom per node: 
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Eight of these elements were then assembled into one superelement 

stiffness matrix, comprised of nine nodes and fifty-four degrees of freedom.  The 

six extra degrees of freedom were condensed out, leaving the desired forty-five 

degrees of freedom.  This stiffness matrix was implemented into UTrAp. 

To test the web stiffener formulation, a UTrAp model was formed with 

very thin vertical webs.  The top and bottom of the web stiffener were pinned, and 

a load was applied horizontally at the midheight of the stiffener.  Figure 2.4 shows 

the horizontal deflections of the web stiffener given by UTrAp along with the 

deflections predicted by beam theory.  The two are in very close agreement, 

showing that the 5-DOF web stiffener element formulation is sufficiently 

accurate. 
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Figure 2.4  Predicted web stiffener deflections 

2.2.7 Web Stiffener Element Geometric Stiffness 

As mentioned previously, the box girders analyzed in UTrAp are formed 

from thin steel plates, which can buckle at low stress levels.  The web stiffeners 

have much smaller width-to-thickness ratios than the webs and flanges, and thus 

are not of primary concern for buckling considerations.  Accounting for geometric 

nonlinearities in the web stiffeners will not significantly affect the buckling load 

computed for the bridge being modeled in UTrAp.  Therefore, the geometric 
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stiffness matrices of the web stiffener elements have not been formulated and are 

not included in the global geometric stiffness matrix. 

2.3 SUMMARY 

Each element type found in UTrAp 2.0 has been presented in this chapter, 

and the formulations for the elastic and the geometric stiffness matrices have been 

given.  A geometric stiffness formulation for the shell elements used in the 

program was not found in the literature, so one has been developed.  Beam 

elements have been introduced to model the web stiffeners found in trapezoidal 

girders. 

Using the stiffness matrices from this chapter, an elastic critical load 

analysis can be performed.  The following chapter explains the use of the 

eigenproblem in elastic critical load analysis, giving both the theory and the 

practical implementation of the solution. 



CHAPTER 3 
The Eigenproblem 

 
“Do not worry about your difficulties in Mathematics.  I can assure you mine are 

still greater.”                - Albert Einstein 

 
All matrices have as properties both eigenvalues and corresponding 

eigenvectors, named for the German eigen meaning “characteristic.”  These 

characteristic values play an important roll in a wide range of fields, from 

chemistry to physics to engineering.  In structural engineering, eigenproblems 

commonly arise in dynamic analyses, where they provide the vibrational 

frequencies of structures, and in stability analyses, where they are used to 

determine the buckling response of a structure.  In this chapter, eigenproblems 

will first be approached from a mathematical perspective.  The application of 

eigenproblems to a buckling analysis will then be presented, followed by a 

discussion of general solution methods and the particular method of solution 

chosen for implementation in UTrAp. 

 

3.1 EIGENPROBLEMS MATHEMATICALLY 

A standard eigenproblem in mathematics takes the form 

xAx λ=  (3.1)

where A is the matrix of interest, x is the eigenvector, andλ is the eigenvalue.  

This equation can be rearranged as 

0xIA =− )( λ  (3.2)
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where I is the identity matrix.  In order for Eq. (3.2) to hold, the determinant of 

)( IA λ− must be zero, or 

0=− IA λ  (3.3)

Many fairly simple solution techniques, some of which are discussed later in this 

chapter, are available for this form of the eigenproblem. 

A second common mathematical form is the generalized eigenproblem: 

BxAx λ=  (3.4)

where A and B are both matrices of order n.  Rearranging Eq. (3.4) gives 

0xBA =− )( λ  (3.5)

In the case where B = I, Eq. (3.5) reduces to standard form.  If B is not equal to 

the identity matrix, a variety of techniques can be used to convert this equation to 

standard form, allowing a more straightforward solution technique to be 

employed. 

3.1.1 Eigenproblem Example 

In order to illustrate the computation of eigenvalues and eigenvectors, a 

simple example will be adapted from Fletcher (1972).  Let 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
8513
478
221

A  

 

(3.6)

and 
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(3.7)

From Eq. (3.1), the resulting vector must be a scalar multiple of the original, 

implying 
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which, rearranged, leads to 
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(3.9)

A theorem of linear algebra (found in Fletcher and elsewhere) states that a set of 

linear homogeneous equations like those in Eq. (3.9) has a solution in which the 

unknowns are not all zero if and only if the determinant of the coefficients on the 

left-hand side is zero.  Thus,  
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(3.10)

which can be written 

0)( =− IA λ  (3.11)

Expanding the determinant results in the characteristic equation: 

0906314 23 =−+− λλλ  (3.12)

Solving Eq. (3.12) gives the eigenvalues: 

=λ 3, 5, and 6 

Substituting any of these eigenvalues into Eq. (3.9) above gives the corresponding 

eigenvector.  For example, using the first eigenvalue, 

( )
( )
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=++−−

xxx
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xxx

 

These equations are by nature not independent, meaning that the values of x1, x2, 

and x3 can only be specified by their relative ratios.  Thus 
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Eigenvectors can therefore be scaled by any number and remain valid.  Note that 
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as expected.  The eigenvectors corresponding to the second and third eigenvalues 

can be found in a similar manner. 

3.1.2 Solution Methods 

While calculating the eigenvalues of a small matrix such as the one above 

can be a straightforward task, large eigenproblems present a much greater 

challenge.  Over the last two centuries, a great deal of effort has been expended 

on finding new and improved methods for solving eigenproblems.  An excellent 

overview of the history of eigenvalue computations is given by Golub and van der 

Vorst (2000).  Considering the large number of papers published each year 

involving eigenproblems, a complete overview of the literature is impractical, but 

the main methods and important developments can be chronicled. 

One of the pioneers of eigenvalue computation was Jacobi, who in 1846 

developed a method for diagonalizing a symmetric matrix, allowing efficient 

computation of the eigenvalues.  The Jacobi method today forms the basis for 

many popular algorithms.  Of the same vintage is the Power iteration method, no 

longer used in its original form due to slow convergence.  Many modern methods, 

such as the inverse iteration, the QR-method, and the Krylov method, use Power 

iteration in some form.  A comprehensive listing of references for these and other 

solution methods is given by Golub and van der Vorst (2000). 

With the advent of the digital computer, the area of eigenvalue 

computations began to flourish.  In the mid-1950’s, the Householder method was 
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developed, along with the Lanczos algorithm.  The latter has endured as a method 

of choice, and has been implemented in various forms in a variety of subsequent 

methods and algorithms.  It was also during this time that Arnoldi created a 

reduction algorithm for non-symmetric matrices, the precursor to the method used 

by UTrAp. 

The developments of the following two decades are discussed in The 

Symmetric Eigenproblem by Parlett (1998), an authoritative work originally 

published in 1980 and republished as a classic.  The QR method, based on Power 

iteration, is explored, along with Rayleigh-Ritz procedures, Krylov methods, and 

subspace iteration.  Since this time, a major focus of research has been the 

refinement of these and other methods for use in computational routines.  

Dongarra and Walker (1995) provide a guide to the various software packages 

developed for the solution of eigenproblems. 

 

3.2 EIGENPROBLEMS IN BUCKLING ANALYSIS 

For a standard, linear structural analysis, the familiar equation relating 

forces and displacements is 

fKu =  (3.13)

where K is the linear elastic stiffness matrix, u is a vector containing the 

displacements, and f is a vector of the static forces on the structure.  This equation 

includes the assumption that the stiffness of the structure is independent of the 

forces applied.  As the forces approach the buckling load, however, the stiffness 

becomes nonlinear, that is, dependent on the forces.  To account for this aspect of 

response, a nonlinear analysis can be performed, the simplest of which is an Euler 

or bifurcation buckling analysis.  In this approach, the total stiffness matrix is 

generalized, giving 
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[ ] fuKK g λλ =+  (3.14)

in which Kg is alternately known as the differential stiffness matrix or, more 

commonly, the geometric stiffness matrix and is a function of the forces on the 

structure.  Buckling occurs when the generalized stiffness matrix becomes 

singular, that is, whenλ is an eigenvalue of 

xKKx gλ−=  (3.15)

In this formulation, λ is the factor of safety against buckling and x is the buckling 

mode shape.  The form of Eq. (3.15) differs from the generalized eigenproblem 

only in the sign of λ. 

Implicit in the above formulation is the assumption that displacements 

prior to buckling remain infinitesimal, allowing the geometric stiffness matrix to 

be scaled by the eigenvalue as the load increases.  This assumption may not be 

valid for certain analysis cases in which displacements do not remain small.  To 

properly model the structural behavior in those circumstances, a large-

displacement nonlinear analysis must be performed.  Such an analysis is generally 

not necessary for plate buckling problems, and is not included in this research. 

3.2.1 Solving the Generalized Eigenproblem 

In the solution of the generalized buckling eigenproblem shown in Eq. 

(3.15), a variety of approaches can be taken.  This section presents two of the 

more common approaches used for buckling analysis. 

3.2.1.1 Inverse Reciprocal Approach 

A straightforward technique is to interchange K and Kg and compute the 

largest negative eigenvalues of 

KxxK g µ=  (3.16)

where 
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λ
µ 1

−=  (3.17)

This approach, described by Grimes et al. (1994), is known as the inverse 

reciprocal approach.  The problem can be transformed into the standard 

eigenproblem by pre-multiplying both sides by K-1: 

xxKK g µ=−1  (3.18)

Thus, the matrix of interest from Eq. (3.1) is 

gKKA 1−=  (3.19)

and the original eigenvalues can be found from Eq. (3.17). 

In the problem at hand, as with typical structural analysis problems, the 

elastic stiffness matrix is positive definite and invertible, while the geometric 

stiffness matrix may be neither.  Thus, this method avoids inverting what may be 

a singular geometric stiffness matrix.  In addition, the largest eigenvalues of the 

transformed matrix are sought, a task well-suited for common algorithms. 

3.2.1.2 Spectral Transformation 

Another approach to work around a possibly indefinite geometric stiffness 

matrix is to shift the range of desired eigenvalues, known as the eigenvalue 

spectrum.  This strategy is known as spectral transformation, first explored by 

Ericsson and Ruhe (1980).  Various shifts are possible, including the two shown 

below. 

Expressing the eigenvalues as 

υ
σλ 1
+=  (3.20)

the generalized problem becomes 

xKKx g⎟
⎠
⎞

⎜
⎝
⎛ +−=

υ
σ 1  (3.21)
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Rearranging Eq. (3.21) leads to 

( )[ ] ( )xKxKK gg −=−−
υ

σ 1  (3.22)

and finally 

( )[ ] ( )xKKKx gg −−−= −1συ  (3.23)

Thus, in terms of the standard eigenproblem shown in Eq. (3.1), 

( )[ ] ( )gg KKKA −−−= −1σ  (3.24)

After solving the standard eigenproblem, the original eigenvalues can be found 

from Eq. (3.20).  This approach is known as the shift-invert method. 

An alternate shifting strategy given by Bostic (1993) is to let 

υ
υσλ
−

=
1

 (3.25)

which, when substituted into Eq. (3.15), yields 

xKKx gυ
υσ
−

−=
1

 (3.26)

Multiplying both sides of this equation by (1-υ ) gives 

xKxKKx gσυυ −=−  (3.27)

and 

[ ] xKKKx g υσ−=  (3.28)

To arrive at the standard eigenproblem form, it is necessary to pre-multiply both 

sides by the inverse of gKK σ− , finally giving 

[ ] xKxKK g υσ =− −1  (3.29)

which corresponds to the standard form of Eq. (3.1).  Therefore, in the buckling 

problem, 

[ ] KKKA g
1−−= σ  (3.30)
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This method is known as the buckling approach, and is often preferred for 

buckling problems. 

The difficulty with spectral transformation is choosing an appropriate shift 

value.  Without prior knowledge of the buckling behavior of a structure, the 

choice would be arbitrary.  A poorly chosen shift value, far from the actual 

eigenvalues sought, could result in a large increase in computation time and a 

decrease in accuracy for iterative solvers.  In a buckling problem, however, the 

eigenvalues of interest are expected to be close to one, the value separating 

stability and instability.  Setting the shift value near unity will result in efficient 

solution for typical stability problems. 

3.3 EIGENPROBLEM SOFTWARE 

To date, a large number of algorithms and programs have been developed 

to solve eigenproblems.  Sorensen (2002) lists a sampling of these, including 

Lanczos, SRRIT, ARNCHEB, LOBPCG, Laso, SVDpack, IRBL, JDQR, and 

ARPACK.  Each is available for no cost online.  A listing of the locations where 

these programs may be found is given in Appendix A.  A researcher is left to 

choose from among these and many others the most efficient package for their 

particular problem. 

In a comprehensive overview of eigenvalue computation developments, 

Golub et al. (2000) state that “at present, ARPACK seems to be the default choice 

for large sparse eigenproblems.”  ARPACK is also one of the most recently 

developed solvers, and thus incorporates the most efficient routines existing 

today.  For these reasons, ARPACK was chosen as the eigensolver for the UTrAp 

buckling analysis. 
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3.3.1 ARPACK 

ARPACK (short for ARnoldi PACKage), developed at Rice University by 

R.B. Lehoucq, D.C. Sorensen, and C. Yang, contains a collection of Fortran77 

subroutines for solving large-scale eigenvalue problems.  It is based on the 

implicitly restarted Arnoldi method, originally developed by Sorenson (1995).  A 

user’s guide (Lehoucq et al. 1998), written by the software developers, explains 

the underpinnings and the use of ARPACK. 

The ARPACK software has the capacity to handle both standard and 

generalized eigenproblems involving single or double precision values, both real 

and complex, in symmetric or non-symmetric matrices.  For the generalized case, 

various drivers are included to implement shift-invert strategies, as explained 

below.  The program uses what is known as reverse communication, allowing the 

user to select an optimum matrix storage format. 

3.3.1.1 Implementation of ARPACK 

ARPACK is available online through the Rice University website (see 

appendix for reference).  Also available online in PDF format is the user’s 

manual.  For generalized eigenproblems, such as for a buckling analysis, a shift-

invert strategy is recommended based upon the use of a sparse-direct matrix 

factorization, which already existed in the original version of UTrAp. 

3.3.1.1.1 Reverse Communication 

ARPACK relies on an indirect method of transferring the necessary matrix 

values.  Called reverse communication, this method allows the user to supply 

subroutines for expressing their applications in vector form as the solution of a 

system of equations, instead of directly specifying the matrix values.  This 

approach allows any storage format to be used and results in significant 

computational savings as well.  In UTrAp, the reverse communication interface 
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allowed the existing matrix storage format to be used without modification in the 

eigenproblem solution. 

3.3.1.1.2 Solution Modes 

To solve the generalized eigenproblem, ARPACK offers four modes of 

operation: regular inverse, shift-invert, buckling, and Cayley transformation.  The 

Cayley spectral transformation is designed for finding extreme eigenvalues, not 

eigenvalues near the origin, so it is not considered in this research project.  The 

remaining three are viable alternatives, and each has been tested in UTrAp. 

Regular inverse mode, corresponding to the inverse reciprocal approach 

previously described, is the most direct method of solving an eigenproblem.  It 

does not incorporate a shift, and thus avoids the accompanying difficulties.  The 

smallest eigenvalues will be found by this mode, even if they are negative or 

otherwise far from the expected values. 

The shift-invert mode in ARPACK, corresponding to Eqs. (3.20) to (3.24) 

above, proves very unstable when used for a buckling analysis.  When tested with 

small-order matrices, this mode fails to provide accurate results for a number of 

cases.  Indefinite geometric stiffness matrices and negative eigenvalues are not 

handled correctly.  For these reasons, this mode is not used in UTrAp. 

A third ARPACK solution mode, corresponding to the buckling mode 

described in Eqs. (3.25) through (3.30), employs a spectral transformation, 

making it useful for finding eigenvalues near a specified shift.  This mode gives 

good results on small matrices with known eigenvalues, but the purpose of 

UTrAp is to find unknown eigenvalues of large matrices.  Unless the shift value is 

below the lowest eigenvalue, the eigenvalues returned will not be those of 

interest.  The lowest eigenvalues are easily missed, with no indication of this 
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omission.  To avoid this limitation, the shift value can be set close to zero so that 

only negative eigenvalues will be omitted. 

In order to choose an eigensolver mode for UTrAp, the regular inverse 

mode and the buckling mode were compared in a buckling analysis of a small 

single-girder bridge in UTrAp.  The shift value for the buckling mode was set at 

0.02, and solver tolerances were varied between 10-8 and 10-2.  Table 3.1 shows 

the values obtained in the comparison.   

Table 3.1 Eigensolver mode comparison 

 Regular Inverse Mode Buckling Mode 

Tolerance Time (s) Error Time (s) Error 

10-8 2.17 0.0000000% 2.00 0.0000001% 

10-7 2.11 0.0000000% 1.84 0.0000147% 

10-6 2.08 0.0000000% 1.42 0.5241094% 

10-5 1.92 0.0000000% 1.27 2.6114868% 

10-4 1.89 0.0000000% 1.25 2.6114868% 

10-3 1.75 0.0000006% 1.25 2.6114868% 

10-2 1.41 0.5142611% 1.25 2.6114868% 
 

The values from Table 3.1 are plotted in Figure 3.1.  Solution time (left 

axis) is shown by solid lines, and percent error (right axis) is shown by dashed 

lines.  The buckling mode is consistently faster, but its accuracy decreases rapidly 

with the changing tolerance.  The accuracy also depends on the choice of the shift 

value.  If a shift can be chosen close to the lowest eigenvalue, the buckling mode 

solver will be both accurate and efficient.  Without prior knowledge of the 

eigenvalues, however, this approach is impractical.  Alternatively, the regular 

inverse mode is somewhat slower, but maintains good accuracy even at large 



tolerances and is not dependent on a shift value.  Because accuracy is more 

critical than the solution time, the regular inverse mode is used in UTrAp. 
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Figure 3.1  Comparison of eigensolver modes 

3.3.1.1.3 Eigensolver Verification 

To verify that the program calculates correct eigenvalues, a pair of simple 

test matrices was created.  Both the elastic stiffness matrix and the geometric 

stiffness matrix were defined to be of order ten, with non-zero terms only on the 

diagonal, sub-diagonal, and super-diagonal.  The eigenvalues of the generalized 

eigenproblem involving these two matrices were found both with the UTrAp 

solver and with Mathcad.  Excellent agreement between the two was achieved for 

both the regular inverse mode and the buckling mode, confirming that the 

ARPACK solver functions correctly within UTrAp. 
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3.4 SUMMARY 

The mathematical underpinnings of an elastic critical load analysis have 

been presented in this chapter.  The eigenproblem, as it is known, has many other 

applications, and has received much attention from mathematicians and 

programmers over the years.  In UTrAp, the buckling analysis eigenproblem is 

solved using ARPACK, a recently developed group of subroutines.  ARPACK 

has proven to be both accurate and efficient within UTrAp 2.0. 
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CHAPTER 4 
Program Verification 

 
“By far the best proof is experience.” 

- Sir Francis Bacon 

 

One of the most important steps in developing any structural analysis 

software is verification:  does the program give trustworthy results?  Verification 

is especially important for nonlinear programs such as UTrAp 2.0, where it is 

difficult to have a sense of whether the results are correct.  In this chapter, the 

procedure followed for verifying the accuracy of UTrAp 2.0 results is presented.  

Computed values from UTrAp are compared with theoretical predictions, results 

from other finite element software, and an actual buckling failure of a steel 

trapezoidal box-girder bridge during construction.  Each method verifies the 

results from UTrAp 2.0, showing that the program gives accurate predictions of 

the buckling characteristics of steel trapezoidal box girders. 

4.1 THEORY 

Perhaps the simplest and most familiar form of instability is named for 

Leonhard Euler, the famous Swiss mathematician who in 1757 developed his 

theory of buckling.  Euler buckling, also known as classical or eigenvalue 

buckling, describes the behavior of a slender column that has reached a critical 

load.  At loads above this value, any slight disturbance will cause the column to 

deflect laterally and lose capacity.  The critical load for Euler buckling is found 

by solving the differential equation that results from analyzing the column in the 



deformed configuration.  The derivation is given in many textbooks on structural 

analysis, including that by Craig (2000), and is not repeated here. 

For a column pinned at both ends, the possible buckling loads are given by 

the equation 

2

22

L
EInPn

π
=  (4.1)

in which E is Young’s elastic modulus, I is the moment of inertia of the section 

about the weak axis, L is the length of the column, and n is any positive integer.  

The critical load is given by the smallest value of n, i.e., n = 1: 
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The value in Eq. (4.2) is the Euler buckling load.  Corresponding to this critical 

load is the buckling mode shape, given by 
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where x is the coordinate along the member, y is the coordinate perpendicular to 

the weak axis (in the direction of the displacement), and A is the amplitude of the 

displacement.  The nature of the problem is such that A is arbitrary, that is, the 

amplitude cannot be found from the solution of the differential equation.  This 

outcome is analogous to the eigenproblem, in which the magnitude of the 

eigenvector components cannot be found.  The Euler buckling load is therefore 

equivalent to the eigenvalue of this problem, and the buckling mode shape 

corresponds to the eigenvector. 

To verify that UTrAp 2.0 correctly predicts the Euler buckling load of a 

simple column, a test was run to simulate plate buckling.  Because UTrAp models 

an entire trapezoidal section and is not easily modified to remove parts of the 

girder, the webs and top flanges of the test girder were made very thin.  The 
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geometric stiffness matrices for only the elements in the bottom flange were 

assembled, preventing the thin plates in the webs and top flanges from buckling.  

This modeling approach left the bottom flange as the dominant member, 

simulating a single plate.  Both ends of the flange were pinned to prevent lateral 

movement, and an axial compressive force was applied. 

The bottom flange in this analysis had a width of 40 inches, a thickness of 

2 inches, and a length of 240 inches.  The moment of inertia about the weak axis 

is therefore 
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The Euler buckling load is found using Eq. (4.2): 
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A buckling analysis was performed within UTrAp 2.0 with a compressive 

force of 100 kips applied to the bottom flange.  The first eigenvalue for this 

problem is computed to be 1.366, which corresponds to a buckling load of 136.6 

kips, less than 1% greater than predicted by theory.  The buckling mode shape is 

predicted to be a single sine wave, as shown in Eq. (4.3).  UTrAp’s buckling 

mode shape is shown in Figure 4.1 below. 

The first buckling mode shape from UTrAp agrees with the prediction, as 

does the critical buckling load.  The latter is slightly greater than predicted by 

theory, due to the discretization inherent in the finite element method.  The 

twenty-foot plate is divided into only ten elements along the length, resulting in a 

higher buckling load than would be expected of an actual plate.  The second 

eigenvalue calculated by UTrAp is 2.036, corresponding to the eigenvector shown 

in Figure 4.2.  The plate did not exhibit Euler buckling, but rather torsional 

buckling.  This form of buckling involves a rotation about the longitudinal axis, 
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and occurs only in very slender sections that are symmetric about both axes, as in 

the case of a thin plate. 

 
Figure 4.1  First plate buckling mode from UTrAp 2.0 

 

 
Figure 4.2  Second plate buckling mode from UTrAp 2.0 

 

 
Figure 4.3  Third plate buckling mode from UTrAp 2.0 
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The buckling mode corresponding to the third eigenvalue of 5.611 is 

shown in Figure 4.3.  This mode is the second Euler buckling mode, given by 

letting n = 2 in Eq. (4.1): 

kips 5414
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π  

The UTrAp value is 3.7% greater than the theoretical value.  The greater 

discrepancy than in the first mode is again explained by the coarse discretization, 

which becomes more important in the higher buckling modes where the plate 

exhibits more curvature.  This observation is confirmed by looking at the fifth 

eigenvalue, which corresponds to the third Euler buckling mode (n = 3).  The 

theoretical value is 1217.25 kips, while the UTrAp value is 1316.9 kips, 8.2% too 

high.  With a finer discretization, the higher buckling modes would agree more 

closely with the theoretical values.  Even with only ten elements along the length, 

however, the first buckling mode given by UTrAp agreed very well with buckling 

theory, demonstrating that the program gives accurate results for plate buckling. 

4.2 FINITE-ELEMENT SOFTWARE 

Although verifying that UTrAp 2.0 correctly handles plate buckling has 

some use, it does not imply that the program can correctly handle the more 

complex problem of trapezoidal box-girder buckling.  The commercial finite-

element analysis program ANSYS was used to perform buckling analyses of steel 

trapezoidal box girders, forming a basis for verifying the results from UTrAp. 

4.2.1 Model 1 Girder 

Before attempting to analyze longer and more complex girders, a simple 

model was built within ANSYS of the Model 1 girder used by Widianto (2003).  

The girder length was set at fifty feet and a load of 1 kip/foot was applied along 

the top flanges.  Struts with a cross-sectional area of 4.0 in2 were placed every ten 
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feet;  no top lateral bracing or internal diaphragms were used.  An elastic critical 

load analysis was performed within ANSYS, giving an eigenvalue of 6.37 and the 

buckled shape shown in Figure 4.4. 

 
Figure 4.4  ANSYS buckled shape for 50´ Model 1 girder 

UTrAp 2.0 was used to analyze the same girder under identical loading.  

The first eigenvalue given by UTrAp is 6.45, only 1.3% higher than the ANSYS 

value of 6.37.  Differences between the analyses are discussed below.  Because 

the current version of UTrAp does not offer three-dimensional post-processing 

capabilities and adding this feature would be difficult, UTrAp 2.0 slices the bridge 

into cross-sections, showing the two-dimensional deformed shape of each cross-

section individually.  Taken together, these cross-sections form a picture of the 

buckled shape of the girder, as shown in Figure 4.5.  The cross-sections shown in 

Figure 4.5 are roughly at quarter points along the length of the girder. 
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Figure 4.5  UTrAp 2.0 buckled shape for 50´ Model 1 girder 

47 



48 

It is clear from comparing Figure 4.4 and Figure 4.5 that the buckled 

shapes provided by the two finite-element programs are very similar.  In both, the 

lack of internal diaphragms allows the cross-section to deform, leading to lateral 

torsional buckling of each web and top flange without movement of the bottom 

flange, rather than buckling of the entire section.  The struts force the top flanges 

to move in the same direction. 

The small discrepancy between the eigenvalues from ANSYS and UTrAp 

is more than accounted for by differences in the models.  In ANSYS, a plate was 

used at each end to model the support diaphragms;  UTrAp uses a very stiff truss 

to model the diaphragms.  The trusses only restrain relative movements of the 

intersections of the webs and flanges at the ends, whereas the plates restrain 

translations as well as rotations along the webs and bottom flange.  In addition, a 

four-noded shell element was used in the ANSYS model, with four times as many 

shell elements as in UTrAp, which employs a nine-noded element.  The result was 

two models with the same number of nodes, but different element formulations.  

Overall, however, these differences were insignificant, as the two programs gave 

similar results. 
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4.3 CASE STUDY OF MARCY BRIDGE COLLAPSE 

UTrAp 2.0 has now been shown to agree with commercial finite element 

software, but its relation to performance under actual field conditions has not been 

demonstrated.  The question remains: does UTrAp provide actual buckling 

characteristics of steel trapezoidal box girders?  To answer this question, the 

Marcy pedestrian bridge is analyzed under actual loading conditions.  This bridge 

buckled during the pouring of the concrete deck (Figure 1.3), presenting an 

opportunity to illustrate both the accuracy and the worth of UTrAp. 

Figure 4.6 shows the section dimensions of the Marcy bridge.  Dimensions 

were originally specified in metric units and are converted to inches in the figure 

below.  The web thickness is constant over the length, while the top and bottom 

flanges each have a greater thickness at midspan.  The bottom flange thickness 

changes 36.1 feet from each support, and the top flange thickness is increased 

50.5 feet from each support.  The span of the bridge is 170.6 feet. 

Only internal diaphragms and struts are used in the Marcy bridge; no top 

lateral bracing is present.  There are nine diaphragms spaces along the length of 

the girder, resulting in an internal diaphragm spacing of about 19 feet.  Struts are 

placed at third points between internal diaphragms.  All bracing members are 

L3x3x⅜ angles with a cross-sectional area of 2.11 in2. 

The concrete deck is 14 feet wide and 7.5 inches thick, with a dead weight 

including the haunches of 1.562 kips/ft.  Additional dead weight from the 

permanent metal deck forms and the diaphragms adds 0.086 kips/ft.  The total 

load applied to the girder is therefore 1.65 kips/ft, not including the self-weight of 

the girder, which is handled internally in UTrAp 2.0. 
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Figure 4.6  Section dimensions of Marcy pedestrian bridge 
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Figure 4.7  UTrAp 2.0 model of Marcy pedestrian bridge 

Because UTrAp discretizes the bridge into finite elements, dimensions 

must be rounded within the program.  Flange and web lengths must be multiples 

of two feet, the length of a shell element, and bracing members must join the 

girder at multiples of one foot, the distance between nodes along the bridge.  

Because of these requirements, the bridge as modeled by UTrAp is not precisely 

the same as the actual bridge, although it is acceptably close for analysis 

purposes.  The Marcy bridge model in UTrAp 2.0 is shown in Figure 4.7.  At the 

top of the figure are the dimensions of the top flanges, web, and bottom flange 

illustrated graphically;  underneath is the plan view of the bridge.  UTrAp 

displays the plan view of a bridge with a realistic length-to-width ratio. 

Finding the length of deck that will cause buckling is an iterative 

procedure, requiring the user to input different deck lengths until the eigenvalue 

becomes 1.0.  Using this process, UTrAp 2.0 predicts that the bridge will reach a 

critical buckling load when the concrete pour has extended 68 feet onto the 

bridge.  The actual bridge failed when the concrete had reached approximately 

midspan, or 85 feet along the bridge.  A cross-section of the buckled shape from 

UTrAp is shown in Figure 4.8.  
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Figure 4.8 UTrAp buckled cross-section of Marcy bridge 

 

Clearly, the predicted failure mode is lateral torsional buckling of the 

entire cross-section, which was the true failure mode observed in the field.  

UTrAp conservatively predicts failure at a pour length of 68 feet, less than the 

actual length of approximately 85 feet.  This error is mainly due to the presence of 

permanent metal deck forms in the actual bridge, which serve to partially brace 

the top flanges, increasing the buckling load slightly.  UTrAp does not account for 

the bracing effect of the metal decking, and thus the buckling loads will be 

generally slightly conservative.  Nonetheless, the program predicts that buckling 

will occur--and indeed, the bridge buckled. 

It should be mentioned that the second buckling mode given by UTrAp 

involves local bending of the webs.  Unlike the first mode, this sort of failure 

would not be catastrophic.  The load associated with this form of failure is 

approximately three and a half times that of the first mode.  It is clear that lowest 

mode is the dominant mode of failure in this bridge. 
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4.3.1 Comparison with ANSYS 

The Marcy pedestrian bridge was further analyzed with the ANSYS 

software.  With a simple loading case of one kip per foot, the results from UTrAp 

2.0 and ANSYS showed good agreement, further verifying the UTrAp answers.  

ANSYS work at the University of Houston also agreed with the modeling done 

for this thesis.  A three-dimensional buckled shape from ANSYS is shown in 

Figure 4.9. 

 
Figure 4.9  Marcy bridge buckled shape from ANSYS 

The bridge is unmistakably exhibiting lateral torsional buckling, as is predicted by 

UTrAp and was seen in the field. 

 

4.4 SUMMARY 

In this chapter, the buckling loads given by UTrAp 2.0 have been shown 

to agree with basic theory, a commercial finite element program, and most 

importantly, with an actual instance of buckling failure in a trapezoidal box 

girder.  In each of these comparisons, the buckling characteristics predicted by 
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UTrAp were accurate.  Because buckling failures can be catastrophic and thus 

must be guarded against with a larger factor of safety than other forms of failure, 

slightly conservative estimates of the buckling load, such as those found for the 

Marcy bridge, are acceptable. 
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CHAPTER 5 
UTrAp 2.0 User’s Guide 

 
“Programming today is a race between software engineers striving to build 

bigger and better idiot-proof programs, and the Universe trying to produce 

bigger and better idiots.  So far, the Universe is winning.”      - Rich Cook 

 
 

UTrAp 2.0 is a revised and expanded version of the program UTrAp, 

developed for the analysis of steel trapezoidal box-girder bridges during 

construction.  The major new feature is the capability to perform buckling 

analyses, but various other improvements have been made, including the ability to 

add web stiffeners to the model and the inclusion of self-weight loading.  

Numerous changes have also been made to the user interface to increase the user-

friendliness.  This chapter presents a brief user’s guide explaining the features of 

UTrAp 2.0.  A complete user’s guide will be included with the release version of 

the program. 

5.1 CAPABILITIES AND LIMITATIONS 

UTrAp 2.0 is intended to perform both linear analyses and linearized 

buckling analyses of straight or curved steel trapezoidal box-girder bridges under 

construction loading.  The program is able to model the partially-composite 

behavior due to concrete curing during the bridge deck pours.  UTrAp 2.0 is 

limited to elastic analyses, and does not account for nonlinear material behavior.  

There are no limits on stresses in the girder, which may therefore exceed the yield 

stress.  In order for the UTrAp analysis to be valid, care must be taken by the 

designer to ensure that the bridge remains elastic under the given loading. 



56 

In addition, local buckling may not be captured by the UTrAp buckling 

analysis.  Bracing members, which in reality are typically channels or angles, are 

modeled as truss members, which carry only axial force.  This simplification 

prevents the buckling of individual truss members, which are defined by a straight 

line between two points. 

Two methods for avoiding inaccuracies related to bracing members are 

suggested.  The designer can ensure that each individual brace member will not 

buckle under its maximum expected load, obtained directly in a buckling analysis 

as explained below.  If any bracing members are unable to carry their expected 

load, the UTrAp analysis will be inaccurate, because it assumes that bracing 

members will not buckle. 

In the case of large brace forces where designing for elastic behavior 

would increase member size undesirably, an alternate procedure can be used to 

ensure accurate results.  After running the initial buckling analysis and finding the 

forces in the bracing members, the user can remove from the model those braces 

which carry a high compressive force.  In effect, this modeling approach treats 

those braces as having buckled and incapable of contributing to the overall 

stiffness of the girder being analyzed.  A buckling analysis can then be performed 

on the revised model, showing the effects of the buckling (removal) of those 

members. 

5.1.1 Straight versus Curved Girders 

Section 4.6.1.2 of the AASHTO LRFD Bridge Specifications pertains to 

structures curved in plan.  Subsection 1 states: 

 
Segments of horizontally curved superstructures with 

torsionally stiff closed sections whose central angle 
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subtended by a curved span or portion thereof is less than 

12.0° may be analyzed as if the segment were straight. 

 
Of note in this provision is that the superstructure must be torsionally stiff, as in 

the case of a composite trapezoidal girder.  The UTrAp program, however, 

analyzes the girders during the concrete pour, when the sections are only partially 

closed, with a stiffness that could be one or two orders of magnitude less than that 

of the completed section.  Accordingly, UTrAp 2.0 analyzes sections with any 

curvature, however small, as curved sections.  Only in the case of a perfectly 

straight bridge will the program treat the girder as straight.  The user can enter a 

value of zero for the radius of curvature, which the program will interpret as 

infinity. 

 

5.2 GRAPHICAL USER INTERFACE 

In UTrAp 2.0, bridge data is input by using the GUI (graphical user 

interface), and analyses are performed by a separate module invoked by the GUI.  

Results are viewed within the user interface.  Presented here is a guide to the user 

interface, adapted from the original user’s guide by Topkaya (2002).  As features 

are explained, an example bridge is analyzed to illustrate the program’s use. 

5.2.1 Example Problem Definition 

The Marcy pedestrian bridge is chosen to illustrate the use of the UTrAp 

2.0 user interface.  Information on the bridge is presented with the discussion of 

global instability in chapter four.  The section dimensions are shown in Figure 

4.7.  In the interest of brevity, this information is not repeated here. 
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5.2.2 UTrAp 2.0 Menus 

The graphical user interface of UTrAp has nine menus.  This section 

describes each of these menus in detail and provides information regarding how 

data is supplied to UTrAp for the analysis of trapezoidal box-girder bridges.  In 

addition, specific information needed to analyze the example bridge described 

above is provided. 

 

File Menu: This menu is used for data management and has four 

submenus.  Files are stored and retrieved using the following submenus: 

New Project:  Select this option to start a new bridge project.  This option is only 

available when first starting UTrAp.  To start a new project after working 

on another project, the user must exit and restart UTrAp. 

Existing Project:  This submenu opens an existing project.  The UTrAp input 

project files have an extension of *.inp.  When this submenu is invoked, 

an open file box will appear which is used to select the existing project 

file.  This option is only available when first starting UTrAp. 

Save Project:  This submenu saves a project to the hard disk.  It can be used to 

save the changes made to an existing project or the contents of a newly 

developed project.  When this submenu is invoked, a save file box will 

appear which is used to name or rename the project file.  As with any 

program, it is recommended that projects be saved on a regular basis while 

using UTrAp. 

Exit:  This submenu is used to exit the program.  A confirmation box will offer a 

chance to save the project upon exiting. 

 

Geometry Menu: Choosing this menu opens the form used to input the 

dimensions of the bridge.  Values should be typed in the boxes provided.  A 



graphical representation of the cross section is displayed on the Geometric 

Properties form.  After entering the required data, the user must press the Save 

Data button in order for the values to be stored in memory.  Pressing the Save 

Data button stores the data and closes the form.  If the user does not want to save 

the values, the Cancel button should be pressed.  This process for saving data 

applies to the subsequent forms as well. 

 

Example Problem:  A new project is formed by choosing “New Project” 

from the File menu.  The dimensions of the Marcy bridge are input into the 

Geometric Properties form, as shown in Figure 5.1. 

 

 
Figure 5.1  Geometric Properties form 
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Plate Properties Menu:  This menu choice opens the Plate Properties 

form, which has three separate tabs for entering the web, bottom flange, and top 

flange properties.  The lengths and corresponding thicknesses of the plates should 

be entered from the start to the end of the bridge.  There are two buttons used to 

add and remove properties, as explained below. 

Add:  This button is used to add plate properties.  A change in plate thickness 

requires the user to specify a new property.  The user should enter the 

number of properties that will be needed to characterize the bridge.  The 

number of rows in the table is increased by the number specified. 

Remove:  This button is used to remove plate properties.  The property number to 

be removed should be specified in the box next to the Remove button. 

 

Example Problem:  In each tab, the number of properties is entered 

through use of the Add button.  The user can enter the total number of plate 

properties in the box next to the Add button before it is pressed.  Additional 

properties can be added as needed with the Add button.  All plate properties are 

entered in a tabular format.  The input for the bottom flange plate properties is 

given in Figure 5.2.  Similar data are provided for the web and top flanges.  Once 

all the necessary plate properties have been specified, the user must select the 

Save Data button in order to store the information in memory. 

 



 
Figure 5.2  Plate Properties form 

Bracing Menu:  This selection opens the Bracing Properties form, which 

has four separate tabs for inputting the internal brace, external brace, top lateral 

brace, and web stiffener properties.  The program currently offers only one type 

of both internal and external braces, which can be seen by clicking on the “Show 

Brace Types” button at the bottom of each tab.  The location and member cross-

sectional area are required for internal and external braces.  The start location, end 

location, type, and area are required for the top lateral braces.  In UTrAp 2.0, web 

stiffeners can also be added to the model by specifying their location, width, and 

thickness.  Buttons are provided for adding and removing braces and stiffeners.  

Functions of the buttons are explained below. 

Add: This button inserts braces or stiffeners.  The number of rows in the table is 

increased by the number specified. 
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Equally Space: This button adds a specified number of braces or stiffeners at 

equally-spaced intervals between the two location values entered.  The 
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location entered in the first box must be smaller than the location in the 

second box. 

Match Internal Brace Locations:  This button copies the internal brace locations 

into the web stiffener tab.  Because internal braces are almost always 

accompanied by web stiffeners, this button simplifies the input process. 

Remove: This button removes the brace or stiffener corresponding to the number 

entered. 

Remove All Braces/Stiffeners:  This button removes all braces or stiffeners in the 

tab. 

Type:  This button is displayed in the internal brace and external brace tabs.  

Because the current version of UTrAp offers only one type of both internal 

and external braces, this button is disabled and the braces are 

automatically set to type 1.  The internal and external brace configurations 

can be seen by using the Show Internal/External Brace Types buttons. 

Area:  This button is used to assign the same cross-sectional area to all brace 

members.  If all braces do not have the same cross-sectional area, the 

values for each brace can be entered directly into the table. 

Width:  This button appears only in the web stiffener tab, and is used to apply a 

constant width to all web stiffeners.  Widths of individual stiffeners can 

also be specified directly in the table. 

Thickness:  Similar to the Width button, this button applies a constant thickness to 

all web stiffeners.  Again, individual thicknesses can be entered directly. 

Show Internal/External/Top Lateral Brace Types:  These buttons are used to 

display the types of braces that can be specified in the program.  When 

this button is pressed, a form that shows the geometry and types of braces 

is displayed on the screen.  Figure 5.3 shows the types of internal and 



external braces supported by the current version of the program.  The two 

types of top lateral braces are shown in Figure 5.4. 

 

  
Figure 5.3  Internal and external brace types 

 

 
Figure 5.4  Top lateral brace types 

All Type 1:  This button, displayed only in the Top Lateral Braces tab, assigns 

Type 1 to all top lateral braces. 

All Type 2: Similar to the previous button, this button assigns Type 2 to all top 

lateral braces. 
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Alternating Starting with Type 1:  This button, displayed only in the Top Lateral 

Braces tab, assigns alternating types to consecutive braces.  The first brace 

will be Type 1, the second Type 2, and so on. 

Alternating Starting with Type 2:  This button accomplishes the opposite of the 

previous button, starting with Type 2 braces instead of Type 1. 

An X-type top lateral system can be handled by the program simply by 

specifying both Type 1 and Type 2 braces with the same start and end points.  For 

each X-brace, two data lines with the same start and end location would be 

needed, one with a Type 1 brace and the other with a Type 2 brace.  Struts can 

also be defined within the program.  As shown in Figure 5.3, an internal brace 

includes a strut (members 1 and 2 in the figure).  If a strut acts at location where 

an internal brace is not present, the user can simply specify the strut as a top 

lateral brace with identical start and end locations. 

 

Example Problem:  Eight internal braces are added using the Equally 

Space button, followed by eight pairs of web stiffeners added using the Match 

Internal Brace Locations button.  The eighteen strut start locations are entered 

using the Equally Space button and are copied into the end locations.  Areas and 

dimensions are entered using the Uniform Properties buttons.  Figures 5.5 through 

5.7 show the relevant tabs of the Bracing Properties form with the data for the 

example problem entered. 

 



 
Figure 5.5  Internal Braces tab 

 
Figure 5.6  Top Lateral Braces tab 
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Figure 5.7  Web Stiffeners tab 

Support Menu:  This menu is used to input support locations.  The 

program assumes the first support entered is pinned and the remainder are on 

rollers.  The number of rows in the table is controlled by the Add and Remove 

buttons as explained below. 

Add:  This button is used to add the specified number of supports.  The number of 

rows in the table is increased by the number entered. 

Remove: This button is used to remove the specified support number. 

 

Example Problem: Two supports are added to the table using the Add 

button.  The bridge is simply-supported, so 0 feet and 170 feet are entered for the 

support locations.  The support at 0 feet will be pinned, although the opposite end 

could be pinned by simply reversing the entries.  Figure 5.8 shows the Support 

Locations form with the entered data. 
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Figure 5.8  Support Locations form 

 

Stud Menu: This menu is used to input stud properties in tabular form.  

The spacing of the studs along the length of the bridge and the number of studs 

per flange should be supplied to the program.  The number of rows in the table is 

controlled by the Add and Remove buttons.  Functions of these buttons are 

explained below. 

Add: This button is used to add the specified number of properties. 

Remove: This button is used to remove the specified property. 

 

Example Problem:  Stud spacing is constant along the length of the Marcy 

bridge, so only one row is added to the table using the Add button.  A stud 

spacing of 24 inches is entered, and two studs per flange are specified.  Figure 5.9 

shows the Stud Properties form with the data entered. 
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Figure 5.9  Stud Properties form 

Pour Sequence Menu:  This menu is used to input pour sequence analysis 

parameters in tabular form.  The concrete deck can be divided into segments 

corresponding to each separate pour.  Lengths of the deck segments are the same 

for all analyses.  Independent analyses can be run for different loadings and deck 

segment stiffnesses.  For each analysis, properties of the deck segments and 

loading on the segments are required input.  Properties for a deck segment include 

the concrete stiffness and the stud stiffness.  A new feature in UTrAp 2.0 is the 

ability to include the self-weight of the girder.  This is accomplished by checking 

the “Include Self-Weight” box.  Note that only the dead weight of the steel girder 

is added by the program, and not any weight from the concrete, bracing members, 

or other loads.  The Pour Sequence table is controlled by four buttons, used to add 

and remove columns and rows as explained below. 

Add Analysis Case:  This button adds a new analysis case to the table.  Three new 

columns are added to the right side of the table and are used to specify the 

concrete stiffness, the stud stiffness, and the load acting on the deck. 
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Remove Analysis Case:  This button removes the specified analysis case.  The 

three columns related to that analysis are removed from the table. 

Add Deck Property After:  As mentioned, the concrete deck can be divided into 

different pours, each with unique properties.  This button adds a new deck 

property row to the table below the specified deck number.  To specify the 

first deck, a value of zero should be used.  The sum of the lengths of the 

deck properties must equal the total bridge length. 

Remove Deck Property:  This button removes the specified row of deck 

properties. 

 

Example Problem:  In this problem, the concrete deck is divided into two 

segments with lengths of 68 and 102 feet, respectively, for reasons explained in 

the previous chapter.  The deck segments are added to the table by making use of 

the Add Deck Property After button.  The two analysis cases to be performed are 

added to the table by using the Add Analysis Case button.  In the first analysis, 

the dead weight from the forms and diaphragms of 0.086 kips/foot is added to 

both decks in addition to the self-weight of the girder.  For the second analysis, 

the weight of the concrete slab and haunches of 1.562 kips/foot is applied only to 

the shorter deck segment.  Figure 5.10 shows the Pour Sequence form with the 

Marcy bridge data. 

 



 
Figure 5.10  Pour Sequence form 

 

Before running an analysis, the user can verify the bridge information by 

looking at the main window, which shows three figures representing the bridge 

properties.  At the top, the plate thickness along the length is shown in an 

elevation view.  The middle figure shows the deck numbers and relative lengths.  

The bottom figure is a plan view of the bridge, showing internal braces, external 

braces, and top lateral braces.  Figure 5.11 shows the main window after all the 

information for the Marcy bridge has been provided. 

70 



 
Figure 5.11  UTrAp 2.0 main window 

Analysis Menu:  The two submenus in this menu call the finite element 

analysis portion of UTrAp 2.0.  When the user invokes either submenu, the 

program verifies that the bridge properties are consistently defined.  For example, 

the length of all plates and decks should add up to the bridge length, and brace 

and support locations should be admissible.  If any of the entries are missing or 

violate the geometric constraints, the program will give an error message.  If all 

entries are permissible, the analysis module is called to perform the finite element 

analyses.  The analysis module runs under the DOS environment.  A user can 

monitor the progress of the analysis by observing the messages displayed in the 

DOS window, which closes automatically when the analysis is completed.  The 

two options on the Analysis menu are explained below. 
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Linear Analysis Submenu:  This submenu launches the linear analysis 

included in the original version of UTrAp.  No nonlinear behavior of any sort will 

be considered.  Figure 5.12 shows a representative linear analysis screen for the 

Marcy bridge. 

 

 
Figure 5.12  Linear Analysis screen 

Buckling Analysis Submenu:  This submenu starts a buckling analysis of 

the bridge, which will automatically perform the required linear analysis.  For 

each analysis case, the program will find the elastic critical buckling load as a 

multiple of all applied loads.  Figure 5.13 shows a representative buckling 

analysis screen for the Marcy bridge. 
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Figure 5.13  Buckling Analysis screen 

Results Menus:  The following eight submenus are used to visualize the 

output.  Details of the submenus will be given in the following sections along 

with figures obtained from the solution of the example bridge. 

Deflections/Cross-Sectional Rotations Submenus: These submenus are 

used to visualize the vertical deflections and cross-sectional rotations of the 

bridge.  Because they have identical properties, both menus will be explained 

together in this section.  Deflection values are the vertical deflection of the center 

of the bottom flange.  Rotation values correspond to the rotation of the bottom 

flange.  For twin girder systems, only the deflections and rotations of the outer 

girder are reported.  Both tabulated and graphical output can be displayed.  In the 

tables, deflection and rotation values at two-foot increments along the length of 

the bridge are shown.  The user can request incremental deflection and rotation 

values for each analysis or cumulative values after each case.  The Deflections 

form and Cross-Sectional Rotations form have four buttons to control the display 

of results.  Functions of the buttons are explained below. 
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Tabulate Incremental Deflections/Rotations: This button tabulates the incremental 

deflections or rotations every two feet along the bridge.  Values are 

presented for all analysis cases and are not summed.  Figure 5.14 shows a 

sample of the deflections for the Marcy bridge. 

 
Figure 5.14  Table of incremental deflections 

Tabulate Total Deflections: This button displays the total deflections or rotations 

every two feet along the bridge in tabular form.  Cumulative deflection 

and rotation values are presented for each analysis.  For example, the 

values in column two would be the summation of deflections or rotations 

resulting from the first and second analyses. 

Plot Incremental Deflections/Rotations:  This button displays the incremental 

deflections or rotations for all analyses on one graph.  Figure 5.15 shows 

the incremental deflection diagram for the example bridge. 
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Figure 5.15  Diagram of incremental deflections  

 

Plot Total Deflections/Rotations:  This button displays the cumulative deflection 

or rotation diagram.  Each curve represents the summation of the 

deflections or rotations from all previous analysis cases. 

 

Cross-Sectional Forces Submenu:  This submenu displays the values of 

the shear, moment, and torsion acting on the bridge at specified cross-sections.  

Data can be displayed in both tabular and graphical forms.  Tabulated output 

consists of shear, moment, and torsion values every two feet along the bridge 

length.  The same values can be displayed graphically.  For twin-girder bridges, 

quantities are summed for the two girders.  The Cross-Sectional Forces form has 

six buttons to control the display of results.  Functions of the buttons are 

explained below. 
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Tabulate Shear: This button tabulates the shear every two feet along the bridge 

length.  Incremental values are presented for all analysis cases.  Figure 

5.16 shows the Cross-Sectional Forces form with the results for the Marcy 

bridge. 

 
Figure 5.16  Table of incremental shear values 

Tabulate Moment:  This button tabulates the internal bending moment at locations 

every two feet along the bridge length.  Incremental values are presented 

for all analysis cases. 

Tabulate Torque:  This button tabulates the incremental torque every two feet 

along the bridge length for all analysis cases. 

Plot Shear Diagram: This button plots incremental shear values for all analyses 

on one graph.  Figure 5.17 shows the shear diagram for the Marcy bridge. 
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Figure 5.17  Diagram of incremental shear values 

Plot Moment Diagram:  This button displays the moment diagram.  Incremental 

moment values for all analyses are displayed on one graph. 

Plot Torsion Diagram: This button shows the incremental torsion values for all 

analyses on one graph. 

 

Stresses Submenu:  This submenu is used to visualize the cross-sectional 

stresses.  The analysis module calculates normal and shear stresses at locations on 

the cross section denoted “section points” every two feet along the bridge length.  

There are 26 and 52 section points on the cross section for the single and dual 

girder systems, respectively.  The Stresses form is used to tabulate the stress 

values along the length of the bridge for all section points.  Both shear and normal 

stress can be tabulated in incremental or cumulative format.  Radio buttons are 

placed on the form to select between shear and normal stress and between 

77 



incremental and cumulative values.  This form is also used to display the stress 

diagram.  Variation of normal or shear stress along the bridge length can be 

plotted for a specified section point.  Additionally, this form can be used to 

display stresses at all section points at a specified cross section.  The Stresses 

form has three buttons that interact with three scroll boxes.  Functions of the 

buttons are explained below. 

Tabulate Stresses: This button tabulates the stress values along the bridge length 

at all section points.  Normal or shear stress can be tabulated depending on 

the user’s selection.  An analysis case must be selected using the scroll 

boxes.  In addition, total or incremental values can be displayed.  Figure 

5.18 shows a stress output table. 

 
Figure 5.18  Table of incremental normal stress values 

Plot Stress Diagram: This button is used to display the variation of normal or 

shear stress along the bridge length at a specified section point.  The 
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analysis case and section point must be selected using the scroll boxes.  

Figure 5.19 shows a plot of incremental normal stress along the bridge 

length for analysis number 2 at section point 11, located in the left top 

flange.  The discontinuities in the graph are due to changes in the top 

flange thickness. 

 
Figure 5.19  Diagram of incremental normal stresses 

Visualize Cross-Sectional Stresses:  This button is used to display the stresses at 

all section points on a specified cross section for an analysis case and 

location selected using the scroll boxes.  Figure 5.20 shows the 

incremental normal stress distribution due to the second analysis in a cross 

section that is at midspan, 85 feet from the start end.  Section points and 

stress values are shown on the diagram.  The arrow in the figure points 

toward the center of radius for the bridge, which for a straight bridge is at 

a distance of infinity. 
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Figure 5.20  Visualization of incremental normal stresses on cross-section 

 

Internal Brace Forces/External Brace Forces Submenus:  These 

submenus are used to display the member axial forces for internal and external 

braces.  Because they have identical properties, both menus will be explained in 

this section.  Axial force values can be tabulated or displayed on a bar graph.  

Incremental axial forces due to each analysis or cumulative axial forces after each 

analysis can be displayed.  Four buttons and a scroll box are used to control the 

output in these forms.  Functions of these buttons are explained below. 

Tabulate Incremental Forces:  This button tabulates the forces in brace members 

due to each analysis case.  Results for a certain member of the brace, 

selected using the scroll box, are displayed.  Positive values represent 

tension forces in the brace members, and negative values represent 

compression forces.  This convention is used throughout the program.  

The internal and external brace configurations and the corresponding 
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member numbers were presented previously in Figure 5.3.  Figure 5.21 

shows the Internal Brace Forces form together with the table of axial force 

values for member 2 of all internal braces. 

 

 
Figure 5.21  Table of incremental axial forces in internal braces 

 

Tabulate Total Forces: Similar to the Tabulate Incremental Forces button, this 

button tabulates the cumulative forces after each analysis. 

Plot Incremental Forces: This button displays a bar chart of axial forces in the 

braces for the member number selected using the scroll box.  Figure 5.22 

shows a bar chart of incremental axial forces in member two of the 

internal braces. 

81 



 
Figure 5.22  Chart of incremental axial forces in internal braces 

Plot Total Forces: This button, similar to the Plot Incremental Forces button, is 

used to display the cumulative forces after each analysis. 

 

Top Lateral Brace Forces Submenu:  This submenu displays the forces 

in the top lateral braces.  Values can either be tabulated or visualized as a bar 

graph.  Incremental forces due to each analysis or cumulative forces after each 

analysis case can be displayed.  The four buttons explained below are used to 

control the output. 

Tabulate Incremental Forces:  This button tabulates the forces in the top lateral 

members due to each analysis case. 

Tabulate Total Forces: This button tabulates the cumulative forces in the top 

lateral members after each analysis case. 
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Plot Incremental Forces:  This button plots a bar chart showing the incremental 

top lateral brace forces due to each analysis. 

Plot Total Forces:  This button shows a bar chart of the cumulative top lateral 

brace forces after each analysis. 

 

Analysis Summary Submenu:  This option displays the maximum values 

of significant quantities for each analysis, including maximum deflections, 

moments, shear forces, and axial stresses.  The Analysis Summary form is shown 

in Figure 5.23. 

 

 
Figure 5.23  Analysis Summary form 
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5.2.3 Buckling Analysis Output 

The preceding discussion of UTrAp 2.0 output has been limited to linear 

analysis, which is the same as in the original version of UTrAp.  The focus in this 

section is on the output given by the revised version of the program.  There are 

two types of output given by UTrAp 2.0 buckling analyses:  the results just prior 

to buckling and the buckled shape. 

5.2.3.1 Results Just Prior to Buckling 

The response of the bridge just before it reaches the critical load is found 

by simply multiplying the displacement vector from the original applied load by 

the first eigenvalue.  Because the analysis is linear and elastic, the eigenvalue is 

simply a scale factor increasing each response quantity.  For example, if the 

midspan vertical deflection of a girder is one inch and the eigenvalue is 2.0, the 

results from the buckling analysis would indicate a midspan deflection of two 

inches.  These results are equivalent to those from an elastic analysis with an 

applied load equal to the original load multiplied by the first eigenvalue. 

This information is useful for two purposes: determining whether the 

bridge will buckle elastically, and determining the forces and displacements just 

prior to buckling.  The UTrAp buckling analysis is valid only if the stresses at all 

points in the girder are below the yield stress of the material.  The analysis is not 

valid if the stresses exceed yield, because linear-elastic material behavior is 

assumed.  If the bridge remains elastic, the forces and displacements can be used 

to check local buckling of individual members.  The forces in the brace members 

just prior to buckling are included in the output, and these quantities must be 

checked to ensure that they are below the buckling loads of the respective 

individual members. 
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As the response quantities just prior to buckling are obtained linearly, they 

are identical to the quantities that would be obtained from a linear analysis using a 

load that is scaled by the critical eigenvalue.  The response quantities can 

therefore be output using the same Results menu as for elastic analysis, with one 

critical difference:  the incremental results cannot be summed to give the total 

results because a buckling analysis cannot rely on elastic superposition of 

successive analyses.  The load vector in the buckling analysis is cumulative: each 

new loading is added to the loadings from previous analyses.  The buckling 

analyses are independent, each being done for all loads on the structure at that 

time.  Each incremental response quantity displayed is therefore equivalent to the 

cumulative linear response for that analysis multiplied by the eigenvalue for that 

analysis, and represents the maximum value possible prior to buckling.  For this 

reason, the display of total results is disabled for buckling analyses. 

The results just prior to buckling may be slightly counter-intuitive upon 

initial inspection.  For the Marcy bridge example, the first analysis case involves 

only the dead weight of the girder, forms, and diaphragms.  The second analysis 

adds the weight of the wet concrete over the first 68 feet of the span, leading to 

greater forces and deflections throughout the girder.  However, the results just 

prior to buckling are just the opposite.  The first analysis has an eigenvalue of 

1.93, which means the response quantities are increased by nearly a factor of two 

over the linear elastic analysis results.  The second analysis case, chosen to result 

in imminent failure, has an eigenvalue of 1.00, which means the results just prior 

to buckling are equal to the results from the linear case.  These results, however, 

are consistent with the eigenproblem.  Thus, in order for the girder to become 

unstable for the first analysis, almost twice the load of the pattern specified for 

this analysis would be required.  For the second case, the applied loads increase, 

and the load factor or eigenvalue associated with buckling is lower than the first 



case.  Though the eigenvalue is lower, the total applied loads are greater than in 

Analysis 1. 

The two results are illustrated in Figure 5.24.  The deflections just prior to 

buckling in Analysis 1 are greater than those in Analysis 2, implying that the 

second analysis is the more critical loading case.  The bridge under the second 

loading case will buckle at lower levels of stress than it will under the first 

loading case.  As explained above, the response quantities from each analysis 

must be individually examined to ensure that the bridge remains elastic. 

 

 
Figure 5.24  Deflections just prior to buckling 
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5.2.3.2 Buckled Shape 

The buckled shape is also output by UTrAp 2.0 and is used to determine 

the type of buckling failure exhibited by the bridge.  The displacements and 

rotations shown in the buckled shape are obtained from the eigenvector 



corresponding to a particular eigenvalue, and thus are not related to the linear 

deformations of the girder.  Because the displacements are based on the 

eigenvector, which was shown in Chapter 3 to have only relative values, no units 

can be assigned to the deformations.  Some experience with the program and 

knowledge of stability is necessary to be able to interpret the failure modes 

predicted by the buckled shape.  Examples of buckled shapes were given in 

Chapter 4, and more are given in this chapter. 

Buckled Shape Submenu:  Within the graphical user interface, the 

buckled shapes for a given analysis can be seen by using the Buckled Shape 

submenu.  Buckled shapes are shown by two-dimensional cross-sections every 

two feet along the length of the bridge.  The user specifies which mode shape and 

the location along the bridge by using the scroll boxes on the form.  The Buckled 

Shape form in Figure 5.25 shows a typical first mode buckled shape of the Marcy 

bridge. 
 

 
Figure 5.25  Buckled Shape form 
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5.3 OTHER ISSUES 

UTrAp 2.0 operates with Windows 98, Windows 2000, and Windows XP.  

A physical memory of at least one gigabyte is recommended, particularly for 

buckling analyses.  If the available physical memory is insufficient, virtual 

memory will be used, greatly increasing the analysis time. 

 

5.4 SUMMARY 

A user’s guide for UTrAp 2.0 has been presented in this chapter.  

Capabilities and limitations of the program were discussed, and the graphical user 

interface was explained.  Little or no knowledge of finite element modeling is 

required to obtain accurate results for both linear and buckling analyses of 

trapezoidal box-girder bridges. 
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CHAPTER 6 
Global Instability 

 
“To buckle, or not to buckle:  that is the question.” 

- adapted from Shakespeare 

 

Stability is a primary concern in the design of slender structures.  With 

thin-walled members such as steel trapezoidal box girders, stability often governs 

the design.  While current design specifications for steel box-girder bridges guard 

against local forms of buckling, they provide little guidance for considering the 

overall stability of the structure.  This oversight has lead to one fatal collapse 

during construction, as well as other less serious problems. 

In this chapter, global instability of a steel trapezoidal girder is 

investigated both theoretically and with UTrAp 2.0.  A derivation of the lateral 

torsional buckling critical stress for a simple trapezoidal girder is developed and 

compared with the UTrAp results.  Recommendations are given that provide the 

designer with methods for determining the overall stability of a trapezoidal girder. 

6.1 BUCKLING 

In design, all applicable limit states for each portion of a structure must be 

considered.  The limit states for the compression flanges of a steel girder include 

both local buckling and lateral torsional buckling, which occurs when lateral 

buckling of the compression elements is accompanied by torsional rotation of the 

member.  This form of buckling depends on the laterally unbraced length of the 

member, and can happen at relatively low stresses compared to the local buckling 

stresses, which depend only on the flange dimensions. 
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For I-section girders in composite construction, each compression flange 

may be checked for these limit states independently, as each girder behaves 

independently before the concrete deck has been placed.  When considering 

trapezoidal sections with two top flanges per girder, it has been assumed that each 

top flange behaves independently and can be treated as part of an I-section for 

buckling considerations.  Only local buckling and lateral torsional buckling of one 

top flange are checked, but lateral torsional buckling of the entire girder is not 

considered. 

For a doubly-symmetric section such as an I-girder, lateral torsional 

buckling can only occur when the member is bent about the strong axis.  The 

AISC LFRD Specifications specifically state that “the lateral-torsional buckling 

limit state is not applicable to members subject to bending about the minor axis” 

(2003).  Because trapezoidal box girders are commonly bent about their minor 

axis, code provisions have assumed that lateral torsional buckling of the entire 

girder cannot occur.  As Buhagiar et al. (1994) pointed out, though, thin-walled 

beams bent about their minor axis can undergo lateral torsional buckling.  Steel 

trapezoidal girders fall into this category, meaning that they can fail in this 

manner.  The results of this oversight are dramatically illustrated in the collapse of 

the Marcy pedestrian bridge.  It is clear that lateral torsional buckling of the entire 

girder must be addressed in the design of steel trapezoidal box girders. 

6.2 LATERAL TORSIONAL BUCKLING OF A TRAPEZOIDAL SECTION 

A typical steel trapezoidal box-girder cross section as shown in Figure 6.1 

is singly symmetric, being symmetric only about its vertical axis.  The moment of 

inertia about the vertical axis of the section is often larger than that about the 

horizontal axis, meaning that the section is primarily bent about its weak axis.  

This fact, however, does not imply that it cannot fail in lateral torsional buckling.  



In reality, this section is more prone to lateral instability, because the top flanges 

are smaller than the bottom flange.  Additionally, the shear center for open 

sections and most sections with top lateral bracing is below the bottom flange, 

increasing the potential for instability. 

Given in this section is a derivation of an approximate critical moment for 

the limiting case of lateral torsional buckling.  The basic derivation makes several 

simplifying assumptions, including a uniform moment loading and the absence of 

a top lateral system.  Corrections are presented to account for these 

simplifications. 
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Figure 6.1  Shear center of a trapezoidal cross-section 

The normal stress at any point on a cross-section is a function of the 

applied moment about the X (centroidal) axis and the distance from that axis: 

x

x

I
yM

=σ  (6.1)
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where y as defined in Figure 6.1 is negative above the X axis, resulting in 

negative stresses in the compression flanges under positive moment.  A new 

property can be defined: 

∫=
A

dAaK 2σ
 

(6.2) 

which is substituted into the first equation, giving 
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As shown in Figure 6.1, a is the distance between the shear center and the 

point where σ acts. 
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Observing that 
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and using the relationship 
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a new cross-sectional property is defined: 
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This property is used in the formula given by Galambos (1968) for the 

critical moment of a singly-symmetric section subject to lateral torsional 

buckling: 
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The term βx will be negative for trapezoidal cross-sections because the top 

flange area is less than the bottom flange area.  This observation implies a 

decreased lateral torsional stiffness, just as one would expect from an I-section 

with a reduced top flange area.  The integrals in the formulation of βx can be 

evaluated separately for each portion of the cross-section as described below.  

Dimensions used in flange integrations are shown in Figure 6.2. 
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Figure 6.2 Notation for flange integration 
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Bottom Flange 
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Figure 6.3 Notation for web integration 

 

Using Figure 6.3, the following relationships for the web are formed: 
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The integrals can then be evaluated: 
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Summing these contributions, Eq. (6.7) can be written: 
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(6.13)a 

 

Now that βx has been determined, the remaining quantities in Eq. (6.8) 

must be found.  E and G are the elastic modulus and the shear modulus of steel, 

respectively.  The moment of inertia about the vertical axis Iy can be found by 
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typical methods knowing that the centroidal axis is at the center of the section.  

The pure torsional constant Jopen for an open section is calculated as follows: 
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1  (6.14)

Finding the warping moment of inertia Iw of a trapezoidal cross-section is a 

complicated process.  Widianto (2003) outlines a procedure for finding Iw in his 

thesis. 

With these parameters known, Eq. (6.8) can be used to find the critical 

moment.  The equation can be rewritten 
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The plus sign is used in front of the radical for moment causing compression in 

the top flanges.  To find the stress at which lateral buckling will occur, the critical 

moment can be divided by the section modulus: 

xc

cr
cr S

MF =  (6.16)

which leads to the following expression for critical stress in the top flanges: 
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 (6.17) 

6.2.1 Example of Determining Critical Stress 

As an example of the above procedure, the lateral torsional buckling stress 

will be calculated for a typical trapezoidal cross-section.  The properties as shown 

in Figure 6.4 are from the Model 1 girder discussed in Chapter 4, originally from 

Widianto (2003).  Cross-section properties including Iw are given in his thesis, 

allowing the focus here to be on the above expressions. 
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Figure 6.4 Properties of Model 1 girder 
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With these values, βx can be calculated as follows: 
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and finally, Eq. (6.17) is employed to find the buckling stress: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛++=

y

w

y

xx

x

cy
cr I

IL
EI
GJ

IL
yEI

F
22

2

2

42 π
ββπ

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛++

−
=

119390
274000002160

)119390)(29600(
)74.83)(11400(

4
131

2
131

)100535()2160(
)19.38)(119390)(29600( 22

2

2

π
π

ksi 58.7=crF  

Thus, a 180-foot trapezoidal girder with the dimensions of Model 1 will exhibit 

lateral torsional buckling at a top-flange compressive stress of 7.58 ksi.  The dead 

weight of the girder, however, is 0.56 kips/foot, which results in a midspan top-

flange stress of 10.36 ksi.  This would suggest that without a top lateral bracing 
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system to prevent lateral torsional buckling, the girder will fail under its own self-

weight. 

The same girder was analyzed using UTrAp 2.0, which predicted a failure 

in lateral torsional buckling at a stress of 7.70 ksi, only 1.6% higher than the value 

predicted using Eq. (6.17).  To further verify the agreement between the two 

predictions, the length of the Model 1 girder was varied between 100 and 200 

feet, and buckling stresses were compared.  The values predicted using Eq. (6.17) 

and those by UTrAp for the critical buckling stresses are shown in Figure 6.5. 
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Figure 6.5 Predicted critical buckling stresses versus length for Model 1 girder 

The results from UTrAp 2.0 agree very well with the predicted stresses 

over the range of lengths.  Because the theoretical solution and the UTrAp model 

incorporate slightly different boundary conditions, the predicted values diverge 

somewhat for shorter lengths, where the effect of support conditions becomes 
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more pronounced.  Overall, however, the agreement between the two methods of 

obtaining the critical buckling stress shows that results are in agreement. 

 

6.2.2 Non-uniform Moment Loading 

The lateral torsional buckling critical stress prediction shown in Equation 

(6.17) is derived for a simply-supported member with uniform moment along the 

span.  This condition represents a worst-case scenario because other loading cases 

and end conditions will result in higher buckling stresses.  To account for other 

girder loading and boundary configurations, the lateral torsional buckling stress 

can be multiplied by Cb, a multiplication factor based on the shape of the moment 

diagram along the member.  For lateral torsional buckling, the AASHTO LRFD 

(2003) expression for this factor is given by Equation 6.10.8.2.3-7: 
2
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in which f2 is the larger of the flexural stresses at either end of the unbraced length 

and f1 is calculated from Equation 6.10.8.2.3-11: 

021 2 ffff mid >−=  (6.19)

Here fmid is the stress at the middle of the unbraced length and f0 is the stress at the 

opposite end of the unbraced length from f2.  If fmid is greater than both f0 and f2, or 

in the case of a simply-supported unbraced length where f0 and f2 are both zero, Cb 

is taken to be 1.0.  For the case of a simply-supported member braced only at the 

ends and midspan, Cb from Eq. (6.18) is 1.3, which matches the value from the 

AISC LRFD specifications.  For an unbraced, simply-supported member with a 

uniform load, the value given for Cb from Eq. (6.18) is 1.0, which is less than the 

value from the AISC LRFD Specifications (2003) of 1.14. 
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The equations for Cb given in the AASHTO Specifications are developed 

for doubly-symmetric I-sections.  The accompanying commentary makes 

provisions for singly-symmetric I-sections, but trapezoidal or box sections are not 

mentioned.  For non-symmetric sections, the increase in the critical stress due to 

non-uniform moment can depend on the position of the loading with respect to the 

shear center as well as on the moment diagram.  Because the shear center of a 

trapezoidal girder can be below the bottom flange, the position of the load can be 

extremely critical. 

To investigate the effect of non-uniform moment on the critical buckling 

stress of trapezoidal girders, models were analyzed using both uniform loading of 

the top flanges and uniform moment.  A uniform moment loading was achieved 

by applying equal and opposite axial forces to the top and bottom flanges on each 

end of the girder.  The magnitude of the forces was determined so as to make the 

constant moment equal to the maximum midspan moment for a uniformly loaded 

girder.  The ratio of the buckling loads for the two cases was then found.  Table 

6.1 shows the Cb factors obtained. 

Table 6.1  Cb factors for trapezoidal box-girder bridges 

Span Model 1 Marcy Pedestrian Bridge 

100 feet 0.9741 - 

160 feet 0.9945 - 

170 feet 0.9973 0.987 

180 feet 1.0002 - 

 

Using the AASHTO expression shown in Eq. (6.18) for an unbraced 

section with uniform loading gives a Cb value of 1.0.  The values in Table 6.1 are 



very close to this number, suggesting that the AASHTO expression, which was 

developed for symmetric sections, would be only slightly unconservative for use 

with straight trapezoidal sections.  Thus, for the simple cases considered, the 

critical buckling stress for a typical steel trapezoidal girder under a uniform 

loading can be approximated by Eq. (6.17) without additional modification 

factors. 

It must be noted that other cases, including curved girders and girders with 

changing cross-sections along the length, have not been studied.  The results for 

the simple case of a straight uniform girder may or may not be applicable to more 

complex cases.  Further investigation is warranted.  Additionally, due to the fact 

that a trapezoidal section is unsymmetric, the effect of loading position will 

influence the critical stress.  The values obtained above were for loading along the 

top flanges;  loading along the centroid of the section and along the bottom flange 

would also be of interest. 

6.3 TOP LATERAL BRACING 

The formula for critical stress shown in Eq. (6.17) is derived for a 

trapezoidal girder with an open section, that is, a girder without top lateral 

bracing, as shown in Figure 6.6.  Top lateral bracing is defined as any bracing that 

extends along the length of a bridge, and thus does not include diaphragms, 

internal braces, or struts.  Typical top lateral bracing configurations are X-type, 

alternating-diagonal, and single-diagonal, each shown in Figure 6.7. 

 

 
Figure 6.6  Open section girder with struts 
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Alternating-Diagonal system 

X-type system 

 
Figure 6.7  Top lateral bracing systems 

 

A top lateral bracing system contributes to the overall stability of a 

trapezoidal girder in several ways.  The presence of top lateral bracing allows for 

shear flow across the top of the girder, forming what is known as a pseudo-closed 

section.  The torsional constant J is increased by several orders of magnitude with 

the addition of a top lateral system. 

In addition to increasing the torsional stiffness of the girder, the top lateral 

bracing system adds stability to a trapezoidal box girder by joining the two top 

flanges, effectively bracing both.  With only struts or internal diaphragms 

between the top flanges, they may both displace in the same direction.  A top 

lateral bracing system forms a truss in the plane of the top flanges, which resists 

lateral movement much better than the individual flanges. 

 

 104



Top Flanges 

HH 

Internal Diaphragms 
and Struts

a) b) 

Top Lateral Bracing

 
Figure 6.8  Trapezoidal girder plan view with and without top lateral bracing 

Figure 6.8 illustrates the truss action made possible by the presence of a 

top lateral bracing system.  A box girder without top lateral bracing, shown in 

Figure 6.8a, must resist lateral forces on the top flanges (represented by point load 

H) by flange bending only.  When a top lateral system is added as shown in 

Figure 6.8b, the force H is resisted by a combination of truss action and top flange 

bending, resulting in a greatly increased lateral stiffness. 

To incorporate top lateral bracing into the derived formula for the lateral 

torsional buckling critical stress, the bracing can be treated as an equivalent plate 

between the top flanges.  This approach, known as the equivalent plate method, 

was developed by Kollbrunner and Basler (1969), and is applied specifically to 

trapezoidal sections by Widianto (2003).  The equations for the equivalent plate 

thicknesses for the three lateral bracing systems in Figure 6.7 are repeated below. 
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For an X-type system, the equivalent plate thickness is: 
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Similarly for an alternating diagonal system, 
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and for a single-diagonal top lateral bracing system, 
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In Eqs. (6.20) through (6.22) above, E and G are the elastic and shear moduli, 

respectively, a is the top width of the girder, s is the strut spacing, and d is the 

length of the diagonal brace members.  Ad, As, and Atf are the areas of the diagonal 

brace members, the struts, and the top flanges, respectively. 

These equivalent plate thicknesses can be used in the calculation of the 

section properties.  The procedure followed to evaluate Eq. (6.7) for the webs and 

flanges can be followed for the equivalent plate between the top flanges, as shown 

below: 
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Along with the additional terms within the integral in Eq. (6.7), both Ix and y0 

change with the presence of a top lateral system and must be calculated for the 

pseudo-closed section. 

6.3.1 Example of Determining Critical Stress with Top Lateral Bracing 

To illustrate the effect of top lateral bracing, the previous example for an 

open-section girder is modified to include the effect of top lateral bracing.  The 

bracing configuration is taken from Widianto (2003), who gives the necessary 

section properties in his thesis.  An alternating diagonal system is chosen with 

WT 7x24 structural tee diagonal members with a cross-sectional area of 7.07 in2 

and L5x3½x½ angle strut members with an area of 4 in2, as shown in Figure 6.9.  

The strut spacing is 10 feet. 

 

 

10 ft 10 ft 

76″ 

As=4 in2Ad=7.07 in2

θ 

 
Figure 6.9  Top lateral bracing for Model 1 girder 

 

Using Eq. (6.22) to find the equivalent plate thickness gives 
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Equations (6.23) and (6.24) provide the integrals for use in the calculation of βx: 
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The values of Ix and y0 for the pseudo-closed section are calculated following the 

procedure given by Widianto (2003), resulting in: 
4in 100909=xI  

in 619.380 =y  

Equation (6.7) can now be used to find βx: 
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This value of βx is approximately 16% smaller than for the open section, which by 

itself leads to only an 18% increase in the critical stress. 

The main factor in increasing the critical stress, however, is the increase in 

the torsional constant J.  Adding top lateral bracing closes the section, greatly 

increasing the torsional stiffness.  The pure torsional constant can be calculated 

for a pseudo-closed section as follows: 
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which for this example becomes 
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The torsional constant for the pseudo-closed section in this example is 343 times 

greater than the open-section torsional constant. 
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Equation (6.17) gives the critical buckling stress: 
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which is sixty times greater than the critical buckling stress of the open section 

girder.  It is clear that lateral torsional buckling will not occur in this case because 

the critical stress is much greater than the typical yield stress of steel.  The girder 

will become inelastic and fail in another manner long before lateral torsional 

buckling becomes possible. 

 

6.4 SUMMARY 

This chapter has discussed global instability of steel trapezoidal box 

girders, focusing on the phenomenon of lateral torsional buckling.  It has been 

shown that the presence of even a small top lateral bracing system will prevent 

lateral torsional buckling.  Because a curved girder experiences torsion, it must 

have a top lateral bracing system, which will prevent lateral torsional buckling of 

the entire cross-section. Curved girders were therefore not considered in this 

chapter.  Straight girders, on the other hand, are not designed for torsion, and thus 

are currently allowed to have no top lateral bracing system.  The Marcy pedestrian 

bridge is an example of a straight girder without a top lateral bracing system, and 

its performance suggests a need for improved understanding of lateral torsional 

buckling for these systems. 
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Two approaches to the design of straight trapezoidal girders can be taken.  

The decision of whether to use top lateral bracing can be left to the designer, who 

would be required only to ensure stability during construction.  If the designer 

decides not to use a top lateral bracing system, the equations derived in this 

chapter could be used to determine the stability of the open-section girder.  

Construction methods such as temporary bracing could be used to increase the 

stability of the open-section girder during the concrete pour.  Alternatively, a top 

lateral bracing system could be required by the code for all steel trapezoidal 

girders, whether straight or curved.  In any case, the current code specifications 

for a straight trapezoidal box girder appear to be insufficient and should be 

modified to account for stability effects. 
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CHAPTER 7 
Conclusions and Future Research 

 
“A poem is never finished, only abandoned.” 

- Paul Valery 

 

The goal of this research was to develop a program that would determine 

the buckling characteristics of steel trapezoidal box-girder bridges.  This task has 

been accomplished, but the application of the program to actual problems has 

only begun to be explored.  What has been learned and what is yet to be learned 

are discussed in this concluding chapter. 

7.1 CONCLUSIONS 

Motivating this research was the general lack of knowledge on the 

stability characteristics of steel trapezoidal box girders, particularly during the 

construction stage.  Numerous local failures have been observed, and several 

global stability failures have occurred, most notably that of the pedestrian bridge 

near Marcy, New York.  The need for a method to predict these sorts of failures 

was clear. 

To address these problems, a buckling analysis capability was added to an 

existing finite element analysis program for steel trapezoidal box girders.  The 

existing program, UTrAp, was developed at The University of Texas at Austin, to 

perform linear analyses of box girder bridges during the construction stage, 

accounting for partially composite action between the deck and the girder.  The 

revised program, named UTrAp 2.0, performs linearized buckling analyses of 

steel box-girder bridges. 
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The following observations can be made concerning the program: 

1. UTrAp 2.0 gives accurate and valuable information on the 

buckling characteristics of steel trapezoidal box-girder bridges.  

The output from the program has been verified by comparison with 

theory, with commercial finite-element software, and with the 

failure of the Marcy pedestrian bridge. 

2. UTrAp 2.0 is practical for design use.  Commercial finite element 

programs such as ABAQUS and ANSYS can perform similar 

analyses, but due to the cost and time involved, they are rarely if 

ever used for design.  Because it is designed specifically for the 

analysis of box-girder bridges, UTrAp 2.0 can analyze in minutes 

what could take hours or days to model in commercial software. 

3. UTrAp 2.0 provides information not readily available from other 

sources.  As mentioned above, the stability of steel box-girder 

bridges during construction is not currently well-understood.  Due 

to this lack of information, code provisions for stability tend to 

treat box girders as two independent I-girders, which may not be a 

conservative approach in some situations.  UTrAp 2.0 enables 

designers to directly determine stability characteristics of box-

girder bridges, without reliance on design codes. 

4. The finite element methods implemented in UTrAp 2.0 can be 

applied to other buckling analysis problems.  The shell element 

geometric stiffness derived in this thesis can be useful in other 

thin-shell buckling problems.  The eigensolver techniques utilized 

in UTrAp could also find application in other analysis problems. 
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7.1.1 Lateral Torsional Buckling 

To complement the program, an analytical approach for predicting lateral 

torsional buckling in straight girders has been developed.  The theoretical 

predictions agree closely with answers from UTrAp 2.0.  Current code provisions 

do not consider lateral torsional buckling of the entire cross-section, the failure 

mode of the Marcy bridge.  The equations given in chapter six provide guidance 

for ensuring the stability of straight steel box-girder bridges. 

 

7.2 FURTHER RESEARCH 

While UTrAp 2.0 has been shown to give accurate results for simple 

cases, the program has several limitations.  Material behavior is assumed to be 

elastic, which does not allow for yielding of the steel prior to buckling.  Inelastic 

behavior of the girder is therefore not captured by UTrAp.  An improved version 

of the program could include material nonlinearity.  Additionally, brace members 

in UTrAp are currently modeled as truss elements, which carry only axial forces.  

The element geometry is defined as a straight line between two points, which does 

not allow for buckling of the individual member.  In reality, braces can carry 

moments in addition to the axial forces and will buckle under high compression 

forces.  To accurately model this behavior, beam elements would have to be used 

for the brace members in UTrAp. 

Using the current UTrAp program, however, much can be determined 

about the behavior of steel trapezoidal box-girder bridges.  The investigation of 

global stability in this thesis addressed only straight, simply-supported girders.  

This is clearly a small subset of possible bridges, and actual designs will almost 

always be more complex.  Using UTrAp 2.0, a study to determine buckling 

characteristics of different types of box-girder bridges could be performed.  
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Curved bridges require top lateral bracing, which would prevent the type of lateral 

torsional buckling illustrated in chapter six.  Thus, curved bridges would exhibit a 

different type of buckling failure, which should be examined.  Buckling behavior 

of straight and curved multiple-span bridges can also be investigated.  This study 

could determine characteristics of negative moment section buckling behavior. 

With more complicated bridge configurations and loading patterns, the 

availability of a validated software tool that can readily assess performance is 

needed because hand-based solutions under such conditions are not practical.  

Thus, software such as UTrAp 2.0 provides engineers with tools that allow for the 

safe design of desirable bridge structures.  



 115

APPENDIX A  EIGENSOLVER RESOURCES 

ARNCHEB 

http://www.cerfacs.fr/algor/Softs/ARNCHEB/arncheb.html

 

ARPACK 

http://www.caam.rice.edu/software/ARPACK/

 

IRBL 

http://www.math.uri.edu/~jbaglama/

 

JDQR 

http://www.math.uu.nl/people/sleijpen/index.html

 

LANCZOS 

http://www.cs.ucdavis.edu/~bai/ET/lanczos_methods/lanczos_methods.html

 

LASO 

http://www.netlib.org/laso/

 

LOBPCG 

http://www-math.cudenver.edu/~aknyazev/software/CG/

 

SRRIT 

http://www.cs.ucdavis.edu/~bai/ET/MVI_methods/overview_SRRIT.html

 

SVDpack 

http://www.netlib.org/svdpack/

http://www.cerfacs.fr/algor/Softs/ARNCHEB/arncheb.html
http://www.caam.rice.edu/software/ARPACK/
http://www.math.uri.edu/~jbaglama/
http://www.math.uu.nl/people/sleijpen/index.html
http://www.cs.ucdavis.edu/~bai/ET/lanczos_methods/lanczos_methods.html
http://www.netlib.org/laso/
http://www-math.cudenver.edu/~aknyazev/software/CG/
http://www.cs.ucdavis.edu/~bai/ET/MVI_methods/overview_SRRIT.html
http://www.netlib.org/svdpack/
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